题目列表(包括答案和解析)
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
设函数
.
(Ⅰ) 当
时,求
的单调区间;
(Ⅱ) 若
在
上的最大值为
,求
的值.
【解析】第一问中利用函数
的定义域为(0,2),
.
当a=1时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数
的定义域为(0,2),
.
(1)当
时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com