(1)由题意可知: 查看更多

 

题目列表(包括答案和解析)

已知数列单调递增,且各项非负,对于正整数,若任意的),仍是中的项,则称数列为“项可减数列”.

(1)已知数列是首项为2,公比为2的等比数列,且数列是“项可减数

列”,试确定的最大值;

(2)求证:若数列是“项可减数列”,则其前项的和

(3)已知是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,

并说明理由.

 

查看答案和解析>>

已知数列{an}单调递增,且各项非负,对于正整数K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的项,则称数列{an}为“K项可减数列”.
(1)已知数列{an}是首项为2,公比为2的等比数列,且数列{an-2}是“K项可减数列”,试确定K的最大值;
(2)求证:若数列{an}是“K项可减数列”,则其前n项的和数学公式
(3)已知{an}是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,并说明理由.

查看答案和解析>>

已知数列{an}单调递增,且各项非负,对于正整数K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的项,则称数列{an}为“K项可减数列”.
(1)已知数列{an}是首项为2,公比为2的等比数列,且数列{an-2}是“K项可减数列”,试确定K的最大值;
(2)求证:若数列{an}是“K项可减数列”,则其前n项的和Sn=
n
2
an(n=1,2,…,K)

(3)已知{an}是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,并说明理由.

查看答案和解析>>

已知数列{an}单调递增,且各项非负,对于正整数K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的项,则称数列{an}为“K项可减数列”.
(1)已知数列{an}是首项为2,公比为2的等比数列,且数列{an-2}是“K项可减数列”,试确定K的最大值;
(2)求证:若数列{an}是“K项可减数列”,则其前n项的和
(3)已知{an}是各项非负的递增数列,写出(2)的逆命题,判断该逆命题的真假,并说明理由.

查看答案和解析>>

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>


同步练习册答案