上两种选法是互斥的.又选得同性委员的概率等于. 查看更多

 

题目列表(包括答案和解析)

养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m (底面直径不变).

(1)分别计算按这两种方案所建的仓库的体积;

(2)分别计算按这两种方案所建的仓库的表面积;

(3)哪个方案更经济些?

查看答案和解析>>

养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).

(1)分别计算按这两种方案所建的仓库的体积;

(2)分别计算按这两种方案所建的仓库的侧面积;

(3)哪个方案更经济些?

查看答案和解析>>

有以下四个命题:
(1)在频率分布直方图中,表示中位数的点一定落在最高的矩形的边上.
(2)要从高二的12个班中选派2个班去文化中心看电影,其中1班是必去的,还有11个班用以下两种方法决定:一是掷两粒骰子,点数和是几,就几班去;二是用抽签的方法来决定,这两种方法都是公平的.
(3)概率为0的事件不一定为不可能事件.
(4)(x+
1
2
)8
的展开式的第二项的系数不是
C
0
8
,是
C
1
8

以上命题中所有错误命题的题号是
(1)、(2)、(4)
(1)、(2)、(4)

查看答案和解析>>

有以下四个命题:
(1)在频率分布直方图中,表示中位数的点一定落在最高的矩形的边上.
(2)要从高二的12个班中选派2个班去文化中心看电影,其中1班是必去的,还有11个班用以下两种方法决定:一是掷两粒骰子,点数和是几,就几班去;二是用抽签的方法来决定,这两种方法都是公平的.
(3)概率为0的事件不一定为不可能事件.
(4)的展开式的第二项的系数不是,是
以上命题中所有错误命题的题号是   

查看答案和解析>>

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>


同步练习册答案