A.k>1 B.k=1 C.k1 D.k<1答案:D 查看更多

 

题目列表(包括答案和解析)

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,右焦点F(1,0).过点F作斜率为k(k≠0)的直线l,交椭圆G于A、B两点,M(2,0)是一个定点.如图所示,连AM、BM,分别交椭圆G于C、D两点(不同于A、B),记直线CD的斜率为k1
(Ⅰ)求椭圆G的方程;
(Ⅱ)在直线l的斜率k变化的过程中,是否存在一个常数λ,使得k1=λk恒成立?若存在,求出这个常数λ;若不存在,请说明理由.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0)所成直线的斜率分别为k1、k2,且满足k1k2=-
1
2

(1)求点M的轨迹E的方程,并指出E的曲线类型;
(2)设直线l:y=kx+m(k>0,m≠0)分别交x、y 轴于点A、B,交曲线E于点C、D,且|AC|=|BD|,N(
2
,1)
求k的值及△NCD面积取得最大时直线l的方程.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0),所成直线的斜率分别为k1、k2,且满足
(Ⅰ)求点M的轨迹E的方程,并指出E的曲线类型;
(Ⅱ)设直线:l:y=kx+m(k>0,m≠0)分别交x、y轴于点A、B,交曲线E于点C、D,且|AC|=|BD|.
(1)求k的值;
(2)若点,求△NCD面积取得最大时直线l的方程.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0),所成直线的斜率分别为k1、k2,且满足k1k2=-
1
2

(Ⅰ)求点M的轨迹E的方程,并指出E的曲线类型;
(Ⅱ)设直线:l:y=kx+m(k>0,m≠0)分别交x、y轴于点A、B,交曲线E于点C、D,且|AC|=|BD|.
(1)求k的值;
(2)若点N(
2
,1)
,求△NCD面积取得最大时直线l的方程.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0),所成直线的斜率分别为k1、k2,且满足k1k2=-
1
2

(Ⅰ)求点M的轨迹E的方程,并指出E的曲线类型;
(Ⅱ)设直线:l:y=kx+m(k>0,m≠0)分别交x、y轴于点A、B,交曲线E于点C、D,且|AC|=|BD|.
(1)求k的值;
(2)若点N(
2
,1)
,求△NCD面积取得最大时直线l的方程.

查看答案和解析>>


同步练习册答案