(1)证明:不存在.使得1..依次既是一个等差数列的前三项.又是一个等比数列的前三项. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
13
x3-2x2+3x
(x∈R)的图象为曲线C.
(1)求过曲线C上任意一点的切线斜率的取值范围;
(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C的切点的横坐标的取值范围;
(3)证明:不存在与曲线C同时切于两个不同点的直线.

查看答案和解析>>

(2012•西城区二模)若An=
.
a1a2an
 (ai=0
或1,i=1,2,…,n),则称An为0和1的一个n位排列.对于An,将排列
.
ana1a2an-1
记为R1(An);将排列
.
an-1ana1an-2
记为R2(An);依此类推,直至Rn(An)=An.对于排列An和Ri(An)(i=1,2,…,n-1),它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做An和Ri(An)的相关值,记作t(AnRi(An)).例如A3=
.
110
,则R1(A3)=
.
011
t(A3R1(A3))=-1.若t(AnRi(An))=-1 (i=1,2,…,n-1),则称An为最佳排列.
(Ⅰ)写出所有的最佳排列A3
(Ⅱ)证明:不存在最佳排列A5
(Ⅲ)若某个A2k+1(k是正整数)为最佳排列,求排列A2k+1中1的个数.

查看答案和解析>>

已知向量
a
=(1,cosα),
b
=(1,sinβ),
c
=(3,1),且(
a
+
b
)∥
c

(1)若α=
π
3
,求cos2β的值;
(2)证明:不存在角α,使得等式|
a
+
c
|=|
a
-
c
|成立;
(3)求
b
c
-
a
2的最小值.

查看答案和解析>>

已知函数满足下列条件:对任意的实数x1x2都有 

    λ,其中λ是大于0的

    常数.实数a0a,b满足 b=a-λfa).

(Ⅰ)证明:λ≤1,并且不存在,使得

(Ⅱ)证明: (b-a0)2≤(1-λ2)(a-a0)2

(Ⅲ)证明: [f(b)]2≤(1-λ2)[f(a)]2.

查看答案和解析>>

ab为常数,:把平面上任意一点

 (ab)映射为函数

   (1)证明:不存在两个不同点对应于同一个函数;

   (2)证明:当,这里t为常数;

   (3)对于属于M的一个固定值,得,在映射F的作用下,M1作为象,求其原象,并说明它是什么图象.

查看答案和解析>>

 

1

2

3

4

5

6

7

8

2

9

充分不必要

4

①②④

9

10

11

12

13

14

 

或0

点P在圆内

①②③

 

 

15.解: (1)因为各组的频率和等于1,故低于50分的频率为:

所以低于50分的人数为(人)………………………………………….5分

(2)依题意,成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),

频率和为

所以,抽样学生成绩的合格率是%.

于是,可以估计这次考试物理学科及格率约为%……………………………………9分.

(3)“成绩低于50分”及“[50,60)”的人数分别是6,9。所以从成绩不及格的学生中选两人,他们成绩至少有一个不低于50分的概率为:  ……………14分

16.解:(1)

,∴

,∴.………………………………………………………………7分

(2)mn

|mn|

,∴,∴

从而

∴当=1,即时,|mn|取得最小值

所以,|mn|.………………………………………………………………14分

17.(1)证明:E、P分别为AC、A′C的中点,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………7分

(2) 证明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………14分

注:直角三角形条件在证这两问时多余了,可直接用两侧面的直角三角形证明即可。

18.解:(1)取弦的中点为M,连结OM

由平面几何知识,OM=1

     得:  

∵直线过F、B ,∴     …………………………………………6分

(2)设弦的中点为M,连结OM

       解得     

                    …………………………………………15分

(本题也可以利用特征三角形中的有关数据直接求得)

19.


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

第(3)问的构造法可直接用第二种方法,作差后用代换即可。

20.解:(1)由方程组的解为不符合题设,可证。………3

(2)假设存在。

由方程组,得,即…5

),可证:当时,单调递减且;当时,单调递减且

,设,则………7

①当时,递增,故

于是上单调递减。

,则上递增,,即,所以………9

②当时,递减,故

于是上单调递减。

上递减,,即,所以

由函数)的性质可知满足题设的不存在。………11

(3)假设1,是一个公差为的等差数列的第r、s、t项,又是一个等比为等比数列的第r、s、t项。于是有:

从而有, 所以

,同(2)可知满足题设的不存在………16

注:证法太繁,在第二问中,可用来表示,消去可得,则构造易得到极值点为

 

 

 

 

 

附加题参考答案

附1.(1)设M=,则有==

所以   解得,所以M=.…………………………5分

(2)任取直线l上一点P(x,y)经矩阵M变换后为点P’(x’,y’).

因为,所以又m:

所以直线l的方程(x+2y)-(3x+4y)=4,即x+y+2=0.………………………………10分

附2.解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(1),由

所以

为圆的直角坐标方程. 

同理为圆的直角坐标方程. ……………………………………6分

(2)由      

相减得过交点的直线的直角坐标方程为. …………………………10分

附3.(1)设P(x,y),根据题意,得

化简,得.………………………………………………………………5分

(2).……………………………………10分

附4.(1)记事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知               ………………………………4分

(2)ξ可取1,2,3,4.  

 ;………………8分

 故ξ的分布列为

ξ

1

2

3

4

P

                                                             

  答:ξ的数学期望为       …………10分

 


同步练习册答案