先证△ABC≌△DEB,可得∠DBC=∠ACB,从而可得∠1=∠2 查看更多

 

题目列表(包括答案和解析)

如图,∠BAC=∠ABD,∠BAD=∠ABC,可得△ABC≌(    ),其理由是(    )。

查看答案和解析>>

7、根据“角平分线上的点到这个角两边的距离相等”来观察下图:
(1)已知OM是∠AOB的平分线,P是OM上的一点,且PE⊥OA,PF⊥OB.垂足分别为E.F,那么
PE
=
PF
.这是根据“
AAS
”可得△POE≌△POF而得到的.
(2)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB,垂足为E,AB=6cm,则△DEB的周长为
6
cm.

查看答案和解析>>

20、问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=90°时,依问题中的条件补全右图;
观察图形,AB与AC的数量关系为
相等
;当推出∠DAC=15°时,可进一步推出∠DBC的度数为
15°
;可得到∠DBC与∠ABC度数的比值为
1:3

(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.?
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为
7
,问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.?
精英家教网

查看答案和解析>>

如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为p.
(1)若D、E、F分别是AB、BC、AC边上的中点,则p=
 

(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是
 

小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ABC以AC边为轴翻折一次得△AB1C,再将△AB1C以B1C为轴翻折一次得△A1B1C,如图2所示.则由轴对称的性质可知,DF+FE1+E1D2=p,根据两点之间线段最短,可得p≥DD2.老师听了后说:“你的想法很好,但DD2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.
精英家教网

查看答案和解析>>


同步练习册答案