题目列表(包括答案和解析)
(1)求证:A点在以M、N为焦点且过F的椭圆上;
(2)设P是MN的中点,是否存在这样的正实数a,使得|PF|是|FM|和|FN|的等差中项?若存在,求出a的值;如不存在,请说明理由.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
![]()
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)证明:易得
,
于是
,所以![]()
(2)
,
设平面PCD的法向量
,
则
,即
.不防设
,可得
.可取平面PAC的法向量
于是
从而
.
所以二面角A-PC-D的正弦值为
.
(3)设点E的坐标为(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)证明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如图,作
于点H,连接DH.由
,
,可得
.
因此
,从而
为二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值为
.
(3)如图,因为
,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故
或其补角为异面直线BE与CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
如图,在正四棱锥
中,
.
(1)求该正四棱锥的体积
;
(2)设
为侧棱
的中点,求异面直线
与![]()
所成角
的大小.
![]()
【解析】第一问利用设
为底面正方形
中心,则
为该正四棱锥的高由已知,可求得
,![]()
所以,![]()
第二问设
为
中点,连结
、
,
可求得
,
,
,
在
中,由余弦定理,得
.
所以,![]()
在
中,“
”是“
”的 ( )
A.充分非必要条件 B.必要非充分条件
C.充分必要条件 D.既非充分也非必要条件
在
中,
则BC =( )
A.
B.
C.2 D.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com