所以.当x∈[-1.1]时..即. 查看更多

 

题目列表(包括答案和解析)

已知问题“设正数x,y满足
1
x
+
2
y
=1
,求x+y的最值”有如下解法;
1
x
=cos2α,
2
y
=sin2α,α∈(0,
π
2
)

则x=sec2α=1+tan2α,y=2csc2α=2(1+cot2α),
所以,x+y=3+tan2α+2cot2α=3+tan2+
2
tan2α
≥3+2
2
,等号成立当且仅当tan2α=
2
tan2α
,即tan2α=
2
,此时x=1+
2
,y=2+
2

(1)参考上述解法,求函数y=
1-x
+2
x
的最大值.
(2)求函数y=2
x+1
-
x
(x≥0)
的最小值.

查看答案和解析>>

已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是

(A)(1-,2)     (B)(0,2)     (C)(-1,2)   (D)(0,1+)

【解析】    做出三角形的区域如图,由图象可知当直线经过点B时,截距最大,此时,当直线经过点C时,直线截距最小.因为轴,所以,三角形的边长为2,设,则,解得,因为顶点C在第一象限,所以,即代入直线,所以的取值范围是,选A.

 

查看答案和解析>>

某水库堤坝年久失修,发生了渗水现象,经测算坝面每渗水1m2的直接经济损失约为250元,当发现时已有200m2的坝面每渗水,且渗水面积以每天4m2的速度扩散,当地政府在发现的同时,立即组织民工进行抢修,假定每位民工平均每天可抢修渗水面积2m2,为此政府需支出服装补贴费每人400元,劳务费每人每天150元,所消耗的维修材料等费用每人每天150元,若安排x名民工参与抢修,抢修完成需用n天.
(1)写出n天关于x的函数关系式;
(2)应安排多少名民工参与抢修,才能使总损失最少.(总损失=渗水损失+政府支出)

查看答案和解析>>

某水库堤坝年久失修,发生了渗水现象,经测算坝面每渗水1m2的直接经济损失约为250元,当发现时已有200m2的坝面每渗水,且渗水面积以每天4m2的速度扩散,当地政府在发现的同时,立即组织民工进行抢修,假定每位民工平均每天可抢修渗水面积2m2,为此政府需支出服装补贴费每人400元,劳务费每人每天150元,所消耗的维修材料等费用每人每天150元,若安排x名民工参与抢修,抢修完成需用n天.
(1)写出n天关于x的函数关系式;
(2)应安排多少名民工参与抢修,才能使总损失最少.(总损失=渗水损失+政府支出)

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>


同步练习册答案