在用单摆测定重力加速度的实验中.为了使单摆做简谐运动.一定要满足的条件是 A.摆球的质量一定要远大于摆线的质量 B.摆球的直径要远小于摆线的长度 C.摆球被释放时的速度应该为零 D.摆球应保持在同一竖直平面内运动 查看更多

 

题目列表(包括答案和解析)

在“用单摆测定重力加速度”的实验中:
(1)为使实验结果尽可能精确,下列器材中应选用
ADFG
ADFG
(用字母填入)
A.1米长的细棉线                   B.20厘米长尼龙线
C.塑料小球                         D.小铁球
E.时钟                             F.0.1秒刻度的秒表
G.最小刻度是毫米的刻度尺           H.最小刻度是厘米的刻度尺
(2)实验时,摆线偏离竖直方向的偏角应小于
,测量时,要让单摆在竖直平面内自由摆动几次后,从摆球经过
平衡位置
平衡位置
时开始计时.
(3)某同学某次实验数据如下:细线长101.1厘米,摆球直径为1.8厘米,完成35次全振动的时间是70.80秒,由这些数据计算得重力加速度g=
9.83m/s2
9.83m/s2

查看答案和解析>>

在“用单摆测定重力加速度”的实验中:
(1)为了利用单摆较准确地测出重力加速度,可选用的器材为
B
B

A.20cm长的结实的细线、小木球、秒表、米尺、铁架台
B.100cm长的结实的细线、小钢球、秒表、米尺、铁架台
C.100cm长的结实的细线、大木球、秒表、50cm量程的刻度尺、铁架台
D.100cm长的结实的细线、大钢球、大挂钟、米尺、铁架台
(2)为了减小测量周期的误差,摆球应在经过最
(填“高”或“低”)点的位置时开始计时,并用秒表测量单摆完成多次全振动所用的时间求出周期.
(3)用十分度的游标卡尺测量摆球直径的结果如图所示,则小球的直径为
20.2
20.2
mm.
(4)增大单摆简谐振动周期的方法是
A
A

A.加大摆长  B.加大摆角      C.加大摆球质量D.减小摆球质量
(5)若用L表示摆长,单摆完成20次全振动所用时间为t,那么重力加速度的表达式为g=
1600π2L
t2
1600π2L
t2

查看答案和解析>>

在“用单摆测定重力加速度”的实验中
(1)以下说法正确的是
C
C

A.测量摆长时应将摆球取下后再测量
B.摆球应选用半径约2cm的木球
C.实验中应控制摆角不大于10°是为了减小系统误差
D.实验中只要测量一次全振动的时间即可知道单摆振动的周期
(2)测周期时,当摆球经过
平衡
平衡
位置时开始计时并计数“0”,测出经过该位置100次的时间如图中秒表所示,则周期为
2.00s
2.00s
.(结果保留3位有效数字)
(3)一组同学在做“用单摆测定重力加速度”的实验,用正确的操作方法,测定了6组摆长L和周期T的对应值.为求出当地的重力加速度,同学们提出了4种不同方法.你认为以下4种方法中,不合理的有
AB
AB

A.从测定的6组数据中任意选取1组,用公式g=4π2L/T 2求出g作为测量值
B.求出L的平均值
.
L
和T的平均值
.
T
,用公式g=4π2
.
L
/
.
T
2求出g作为测量值
C.用6组L、T值,用g=4π2L/T2求出6个g,再求这6个g的平均值作为测量值
D.在坐标纸上作出T 2-L图象,从图象中计算出图线斜率K,根据g=4π2/K求出g.

查看答案和解析>>

在“用单摆测定重力加速度”的实验中:
(1)老师提供了体积相同且均为实心的木球、铝球和钢球,你认为应选择
钢球
钢球
球用来制作单摆进行实验.
(2)若在某次实验中,测得单摆摆长为l、单摆完成n次全振动的时间为t,则利用上述测量量和常数求重力加速度g的表达式为g=
4π2n2l
t2
4π2n2l
t2

查看答案和解析>>

“在用单摆测定重力加速度”的实验中

(1)用摆长为L和周期T计算重力加速度的公式是g=
4π2L
T2
4π2L
T2

(2)如果用10分度的游标卡尺测得的摆球直径如图甲所示,则摆球的直径d=
1.35
1.35
cm;用最小刻度为1mm的刻度尺的零点对准摆线的悬点,测得的摆线长如图乙所示,则单摆的摆长为L=
96.15
96.15
cm;如果测量了40次全振动的时间如图丙所示,则此单摆的振动周期T=
1.98
1.98
s.
(3)由实验数据得出重力加速度g=π2
9.74m/s2
9.74m/s2

查看答案和解析>>

一、本题共10小题,每小题3分,共30分。在每小题给出的四个选项中,有的小题只有一个选项是正确的,有的小题有多个选项是正确的。全部选对的得3分,选对但不全的得2分,有选错或不答的得0分。

1.AC  2.B  3.C  4.BD  5.D  6.B  7.AB  8.B  9.CD  10.ABD

二、本题共3小题,共14分。把答案填在题中的横线上。

11.ABD(3分)        (注:选对但不全的得2分)

12.(1)FF′ (3分)            (2)不变 (2分)

13.;(2分)  ;(2分)       mg(2分)

(注:用相邻两段位移表达出来,只要表达正确的不扣分)

三、本题包括7小题,共56分。解答应写出必要的文字说明,方程式和重要的演算步骤。只写出最后答案的不能得分,有数值计算的题的答案必须明确写出数值和单位。

14.(7分)

解:(1)设斜面对箱子的支持力为N,箱了上滑的加速度为a。根据牛顿第二定律,得平行斜面方向,F-mgsin37°-μN=ma,      …………1分

垂直斜面方向,N=mgcos37°,      …………1分

解得箱子的加速度a=(sin37°+μcos37°)=2.4m/s2      …………2分

(2)设箱子滑到斜面顶端的速度v,由运动学公式,

v2=2as,   …………2分

解得                                          v= 。  …………1分

15.(7分)

解:(1)设塔顶距地面的高度为h,根据自由落体运动公式,得

h=gt2=80m。  …………2分

(2)设石块落地时的速度为v,根据匀变速运动规律,v=gt。 …………2分

    设石块落地时重力做功的功率为P,则P=mgv=mg2t=2.0×103W 。…………3分

16.(8分)

解:(1)滑块B沿轨道下滑过程中,机械能守恒,设滑块BA碰撞前瞬间的速度为v1,则                                                   mgR=。 …………1分

滑块B与滑块A碰撞过程沿水平方向动量守恒,设碰撞后的速度为v2,则

               mv1=2mv2 。      …………1分

设碰撞后滑块C受到轨道的支持力为N,根据牛顿第二定律,对滑块C在轨道最低点有                                                        N-2mg=2mv/R …………1分

联立各式可解得,                            N=3mg。  …………1分

根据牛顿第三定律可知,滑块C对轨道末端的压力大小为N′=3mg。…………1分

(2)滑块C离开轨道末端做平抛运动,设运动时间t,根据自由落体公式,

     h=gt2 。…………1分

滑块C落地点与轨道末端的水平距离为s=v2t ,…………1分

联立以上各式解得s=。  …………1分

17.(8分)

       解:(1)飞船在圆轨道上做匀速圆周运动,运行的周期   T=。 …………1分

       设飞船做圆运动距地面的高度为h,飞船受到地球的万有引力提供了飞船的向心力,根据万有引力定律和牛顿第二定律,得

。 …………2分

       而地球表面上的物体受到的万有引力近似等于物体的重力,即

=mg,  …………1分

联立以上各式,解得                  h=-R。 …………1分

(2)飞船运动的圆轨道的周长      s=2π(R+h), …………1分

动行的速度                            v==,   …………1分

解得                                   v=。  …………1分

18.(8分)

       解:(1)重锤在竖直平面内做匀速圆周运动,当重锤运动通过最高点时,打夯机底座受连接杆竖直向上的作用力达到最大。此时重锤所受的重力mg和连接杆对重锤向下的拉力T1提供重锤的向心力,根牛顿第二定律

       T1+mg=mw2R。    …………1分

       连接杆对打夯机底座向上的拉力       T1′=T1。 …………1分

       当T′=Mg时,打夯机底座刚好离开地面,  …………1分

       解得                                   ω=。  …………1分

(2)当重锤通过最低位置时,重锤所受的重力mg和连接杆的拉力T2的合力提供重锤的向心力,根据牛顿第二定有: T2-mg=mw2R。…………1分

连接杆对打夯机底座的作用力T2′的方向向下,且T2′=T2

设打夯机受到地面的支持力N,根据牛顿第二定律,

                     N=Mg+T2,…………1分

联立以上各式解得     N=2(M+m)g 。…………1分

根据牛顿第三定律,打夯机对地面压力的大小N′=N=2(M+m)g。…………1分

19.(9分)

   解:(1)设运动员在空中飞行时间为t,运动员在竖直方向做自由落体运动,得

ssin37°=gt2

   解得:                                           t==1.2s。…………2分

       (2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即

scos37°=v0t

   解得:                                           v0==8.0m/s。…………2分

       (3)运动员落在A点时沿竖直向下的速度vy的大小为

          vy=gt=12m/s   …………1分,

       沿水平方向的速度vx的大小为          vx=8.0m/s。

       因此,运动员垂直于斜面向下的速度vN

                     vN=vycos37°-vxsin37°=4.8m/s。 …………1分

       设运动员在缓冲的过程中受到斜面的弹力为N,根据动量定理

(N-mgcos37°)t=mvN,…………1分

       解得:                         N=mgcos37°+=880N。…………1分

20.(9分)

       解:(1)设物块滑上小车后经过时间t1速度减为零,根据动量定理

μmgt1=mv

    解得:                                              t1==0.5s 。…………1分

  (2)物块滑上小车后,做加速度为am的匀变速运动,根牛顿第二定律

μmg=mam

解得:                                              am=μg=2.0m/s2

小车做加速度为aM的匀加速运动,根据牛顿第二定律

F-μmg=MaM

解得:                                       aM==0.5m/s2。…………1分

设物块向左滑动的位移为s1,根据运动学公式

s1=v0t1-amt=0.25m,

当滑块的速度为零时,小车的速度V1

V1=V0+amt1=1.75m/s。

设物块向右滑动经过时间t2相对小车静止,此后物块与小车有共同速度V,根据运动学公式,有                            V=V1+aMt2=amt2

解得:                                       t2=s。  …………1分

滑块在时间t2内的位移为s2=ams=m≈1.36m。(方向向右) …………1分

因此,滑块在小车上滑动的过程中相对地面的位移为

  s=s2-s1=m≈1.11m,方向向右。…………1分

(3)由(2)的结果,物块与小车的共同速度

V=m/s,

因此,物块在小车上相对小车滑动的过程中,系统的机械能增加量ΔE

 ΔE=(m+M)V2-mv-MV≈17.2J。…………2分

 

 


同步练习册答案