题目列表(包括答案和解析)
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
已知△
中,A,B,C。的对边分别为a,b,c,且![]()
(1)判断△
的形状,并求sinA+sinB的取值范围。
(2)若不等式
,对任意的满足题意的a,b,c都成立,求实数k的取值范围.
【解析】第一问利用余弦定理和向量的数量积公式得到
![]()
判定形状,并且求解得到sinA+sinB的取值范围
第二问中,对于不等式恒成立问题,分离参数法,得到结论。
| a•2x+a2-2 | 2x-1 |
设函数
是在
上每一点处可导的函数,若
在
上恒成立.回答下列问题:
(I)求证:函数
在
上单调递增;
(II)当
时,证明:
;
(III)已知不等式
在
且
时恒成立,求证:
.
已知函数
,其中a为常数,且![]()
(1)若
是奇函数,求a的取值集合A;
(2)当a=-1时,设
的反函数为
,且函数
的图像与
的图像关于
对称,求
的取值集合B。
(3)对于问题(1)(2)中的A、B,当
时,不等式
恒成立,求x的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com