∽PAD.且OE=OD=1. 查看更多

 

题目列表(包括答案和解析)

(2013•南通三模)如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(1,0),离心率为
2
2
.分别过O,F的两条弦AB,CD相交于点E(异于A,C两点),且OE=EF.
(1)求椭圆的方程;
(2)求证:直线AC,BD的斜率之和为定值.

查看答案和解析>>

已知定点A(12,0),M为曲线
x=6+2cosθ
y=2sinθ
上的动点.
(1)若点P满足条件
AP
=2
AM
,试求动点P的轨迹C的方程;
(2)若直线l:y=-x+a与曲线C相交于不同的E、F两点,O为坐标原点且
OE
OF
=12
,求∠EOF的余弦值和实数a的值.

查看答案和解析>>

(2008•宝坻区一模)如图所示,AF是⊙O的直径,AD与圆所在的平面垂直,AD=8,BC也是⊙O的直径,AB=AC=6,OE∥AD,且OE=AD.
(1)求二面角B-AD-F的大小;
(2)求直线BD与EF所成的角.

查看答案和解析>>

精英家教网已知E、F是x轴上的点,坐标原点O为线段EF的中点,G、P是坐标平面上的动点,点P在线段FG上,|
.
FG
|
=10,|
.
EF
|
=6,(
.
PE
+
1
2
.
EG
)•
.
EG
=0

(1)求P的轨迹C的方程;
(2)A、B为轨迹C上任意两点,且
.
OE
.
OA
+(1-α)
.
OB
,M为AB的中点,求△OEM面积的最大值.

查看答案和解析>>

已知定点A(12,0),M为曲线(x-6)2+y2=4上的动点,
(1)若
AP
= 2
AM
,试求动点P的轨迹C的方程
(2)若直线l:y=-x+a与曲线C相交与不同的两点E,F.O为坐标原点,且
OE
OF
=12
,实数a的值.

查看答案和解析>>


同步练习册答案