2.余弦定理:第一形式:=.第二形式:cosB= 利用余弦定理.可以解决以下两类有关三角形的问题: (1) , (2) . 查看更多

 

题目列表(包括答案和解析)

已知函数.]

(1)求函数的最小值和最小正周期;

(2)设的内角的对边分别为,且

,求的值.

【解析】第一问利用

得打周期和最值

第二问

 

,由正弦定理,得,①  

由余弦定理,得,即,②

由①②解得

 

查看答案和解析>>

在△ABC中,为三个内角为三条边,

(I)判断△ABC的形状;

(II)若,求的取值范围.

【解析】本题主要考查正余弦定理及向量运算

第一问利用正弦定理可知,边化为角得到

所以得到B=2C,然后利用内角和定理得到三角形的形状。

第二问中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,则A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>

在△中,∠,∠,∠的对边分别是,且 .

(1)求∠的大小;(2)若,求的值.

【解析】第一问利用余弦定理得到

第二问

(2)  由条件可得 

将    代入  得  bc=2

解得   b=1,c=2  或  b=2,c=1  .

 

查看答案和解析>>

已知△中,A,B,C。的对边分别为a,b,c,且

(1)判断△的形状,并求sinA+sinB的取值范围。

(2)若不等式,对任意的满足题意的a,b,c都成立,求实数k的取值范围.

【解析】第一问利用余弦定理和向量的数量积公式得到

判定形状,并且求解得到sinA+sinB的取值范围

第二问中,对于不等式恒成立问题,分离参数法,得到结论。

 

查看答案和解析>>

在△ABC中,内角A、B、C所对边的边长分别是a、b、c,已知c=2,C=.

(Ⅰ)若△ABC的面积等于,求a、b;

(Ⅱ)若,求△ABC的面积.

【解析】第一问中利用余弦定理及已知条件得又因为△ABC的面积等于,所以,得联立方程,解方程组得.

第二问中。由于即为即.

时, , ,   所以时,得,由正弦定理得,联立方程组,解得,得到

解:(Ⅰ) (Ⅰ)由余弦定理及已知条件得,………1分

又因为△ABC的面积等于,所以,得,………1分

联立方程,解方程组得.                 ……………2分

(Ⅱ)由题意得

.             …………2分

时, , ,           ……1分

所以        ………………1分

时,得,由正弦定理得,联立方程组

,解得,;   所以

 

查看答案和解析>>


同步练习册答案