设命题甲:;命题乙: ;则甲是乙的( )条件A. 充要 B. 充分不必要 C. 必要不充分 D.既不充分也不必要 查看更多

 

题目列表(包括答案和解析)

2、设命题甲为:0<x<5,命题乙为:|x-2|<3,则甲是乙的(  )

查看答案和解析>>

设命题甲:{a|关于x的不等式ax2+2ax+1>0的解集是R};命题乙:0<a<1,则命题甲是命题乙成立的
必要不充分
必要不充分
条件(从“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”中选取).

查看答案和解析>>

设命题甲为:x2-5x<0,命题乙为|x-2|<3,则甲是乙的(  )

查看答案和解析>>

设命题甲:|a|>|b|;命题乙:a2>b2,则命题甲是命题乙成立的(  )
A、充分不必要条件B、充要条件C、必要不充分条件D、既非充分又非必要条件

查看答案和解析>>

设命题甲:,命题乙:,则甲是乙的(     ).

A.充分不必要条件  B.必要不充分条件   C.充要条件   D.既不充分也不必要条件

查看答案和解析>>

Ⅰ 选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

 B

C

C

B

C

C

B

A

A

B

 

Ⅱ 非选择题

二、13.         14.4          15.-2            16.①    

三、解答题:

17.(I)解:

    --------------------------4分

,即时,取得最大值.

因此,取得最大值的自变量x的集合是  -------8分

(Ⅱ)解:

由题意得,即.

因此,的单调增区间是.-------------------13分

18.⑴∵f (x) ≥x的解集为R

∴x2-(4a+1)x+a2≥0对于x∈R恒成立        -----------------------------------2分

∴△=(4a+1)24a2≤0

  即12 a28a+1≤0             --------------------------------------------------------4分

    (2a+1)(6a+1)≤0

∴?≤a≤?

∴a的取值范围为[?,?]       ------------------------------------------------------6分

(2)∵,---------------------------------------------------------8分

的对称轴,知单调递增

处取得最小值,即---------------------------------------------------11分

    解得  ∵        ∴----------------------13分

19、解:由<0,得

(*)----------------------------------------------------------------------2分

⑴当 a>0时,(*)等价于a>0时,

∴不等式的解为:<x<1--------------------------------------------------------------------5分   

⑵当a=0时,(*)等价于<0即x<1----------------------------------------------------8分

⑶当a<0时,(*)等价于a<0时,

∴   不等式的解为 : x<1或x>-----------------------------------------------------11分

综上所述:当a>0时,不等式的解集为(,1);当a=0时,不等式的解集为

当a<0时,不等式的解集为∪()-------------------------------12分

20.

---------------------------------------------------------------------------------3分

---------------------------------------------------------------------7分

---------------------------------12分

21.解:(1)由已知

  

 

(2)

 椭圆的方程为

22.(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),             ①

令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.

令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.---------------------------------------3分

(2)设

所以f(x)是增函数.----------------------------------------------------6分

(3)解:∵由(2)知f(x) 在R上是单调增函数,又由(1)f(x)是奇函数.

f(k?3)<-f(3-9-2)=f(-3+9+2),  k?3<-3+9+2,

3-(1+k)?3+2>0对任意x∈R成立.

令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.

R恒成立.

---------------------------------------------------------------------------12分

 

 


同步练习册答案