由直线轴和曲线所围成的曲边梯形的面积是( ). A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知曲线相交于点A,

(1)求A点坐标;

(2)分别求它们在A点处的切线方程(写成直线的一般式方程);

(3)求由曲线在A点处的切线及以及轴所围成的图形面积。(画出草图)

【解析】本试题主要考察了导数的几何意义的运用,以及利用定积分求解曲边梯形的面积的综合试题。先确定切点,然后求解斜率,最后得到切线方程。而求解面积,要先求解交点,确定上限和下限,然后借助于微积分基本定理得到。

 

查看答案和解析>>

已知曲线相交于点A,

(1)求A点坐标;

(2)分别求它们在A点处的切线方程(写成直线的一般式方程);

(3)求由曲线在A点处的切线及以及轴所围成的图形面积。(画出草图)

【解析】本试题主要考察了导数的几何意义的运用,以及利用定积分求解曲边梯形的面积的综合试题。先确定切点,然后求解斜率,最后得到切线方程。而求解面积,要先求解交点,确定上限和下限,然后借助于微积分基本定理得到。

 

查看答案和解析>>

已知二次函数y=x2,现取x轴上的点,分别为A1(1,0),A2(2,0),A3(3,0),…,An(n,0),…,过这些点分别作x轴垂线,与抛物线分别交于A′1,A′2,A′3,…,A′n…,记由线段A′nAn,AnAn+1,An+1A′n+1及抛物线弧A′n+1A′n所围成的曲边梯形的面积为an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)作直线y=与A′nAn(n =1,2,3,…)交于Bn,记新的曲边梯形A′nBnBn+1A′n+1,面积为bn,求的前n项和Sn
(Ⅲ)在(Ⅱ)的前提下,作直线y=x,与A′nAn(n=1,2,3,…)交于Cn,记Rt△Cn+1An+1An面积与曲边梯形A′nBnBn+1A′n+1面积之比为Pn,求证:P1+

查看答案和解析>>

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.
精英家教网

查看答案和解析>>

如图1,已知抛物线C:y=3x2(x≥0)与直线x=a.直线x=b(其中0≤a≤b)及x轴围成的曲边梯形(阴影部分)的面积可以由公式S=b3-a3来计算,则如图2,过抛物线C:y=3x2(x≥0)上一点A(点A在y轴和直线x=2之间)的切线为l,S1是抛物线y=3x2与切线l及直线y=0所围成图形的面积,S2是抛物线y=3x2与切线l及直线x=2所围成图形的面积,求面积s1+s2的最小值.

查看答案和解析>>


同步练习册答案