A.和 B.和 C.和 D.和 查看更多

 

题目列表(包括答案和解析)

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

A、B两点相距4cm,且A、B与平面a的距离分别为3cm和1cm,则AB与平面a所成角的大小是(  )

查看答案和解析>>

A、B两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有(    )

A.13种                 B.14种            C.15种                D.16种

查看答案和解析>>

ABC三城市分别有某种机器10台、10台和8台,支援D市18台、E市10台.从A市调一台机器到DE两市运费分别为200元和800元;从B市调一台机器到DE两市运费分别为300元和700元;从C市调一台机器到DE两市运费分别为400元和500元.?

(1)若从AB两市各调x台到D市,当三市28台机器全部调运完毕后,求总运费P(x)关于x的函数表达式,并求出P(x)的最大值和最小值;?

(2)若从A市调x台到D市,从B市调y台到D市,当28台机器全部调运完毕后,用xy表示总运费P,并求P的最大值和最小值.

查看答案和解析>>

a、b、c、d均为实数,使不等式都成立的一组值(a,b,c,d)是               .(只要写出适合条件的一组值即可)

查看答案和解析>>

一、1、D    2、A   3、B    4、D    5、B    6、C   7、A    8、D   9、A   10、C

二、11、二     12、2cm     13、1     14、49720,    15、5www.ks5 u.com

三、16、解:

(1)……3分

,得……………………………5分

(2)由(1)得………7分

时,的最大值为…………………………………9分

,得值为集合为………………………10分

(3)由所以时,为所求….12分

 

 

17、解:www.ks5 u.com

(1)

   数列的各项均为正数,

   即,所以数列是以2为公比的等比数列……………………3分

的等差中项,

数列的通项公式…………………………………………………………6分

(2)由(1)及,…………………………………………8分

    

                        ①

      ②

②-①得,

…10分

要使成立,只需成立,即

使成立的正整数n的最小值为5…………………………………12分

18、解:(1)解法一:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”,记“有放回摸球两次,两球恰好颜色不同”为事件A,

“两球恰好颜色不同”共2×4+4×2=16种可能,………………4分

解法二:“有放回摸取”可看作独立重复实验   每次摸出一球得白球的概率为

 “有放回摸两次,颜色不同”的概率为………………………4分

(2)设摸得白球的个数为,依题意得

……

…………………………………………………………………………………………10分

     ……………………………………………………12分

19、证明:(1)平面 平面平面,

平面 侧面侧面……………………4分

(2)的中点, 

侧面侧面 从而  故的长就是点到侧面的距离在等腰中,……………………………………8分

说明:亦可利用向量的方法求得

(3)几何方法:可以证明就是二面角

平面角……………………………………10分

从而………………13分

亦可利用等积转换算出到平面的高,

从而得出二面角的平面角为……13分

说明:也可以用向量法:平面的法向量为

平面的法向量为………………10分

二面角的平面角为

20、解(1)设双曲线方程为

由已知得,再由,得

故双曲线的方程为.…………………………………………5分

(2)将代入

 由直线与双曲线交与不同的两点得

 即.   ①   设,则…………………8分

,由

.…………………………11分

于是,即解此不等式得    ②

由①+②得

故的取值范围为…………………………………13分

21、解:(1)由题设知,又,得……………2分

       (2)…………………………………………………3分

        由题设知

  …………………………………………………4分

(当时,取最小值)……………………4分

时,当且仅当   …………………7分

(3)时,方程变形为

 令………9分

,得

,得………………………………11分

又因为

取得唯一的极小值

又当时,的值,当时,

的值,函数草图如右

两图像由公共点时,方程有解,

的最小值为,………………………………………………13分

 

 

 

 

 

 


同步练习册答案