题目列表(包括答案和解析)
如图,三棱锥
中,侧面
底面
,
,且
,
.(Ⅰ)求证:
平面
;
(Ⅱ)若
为侧棱PB的中点,求直线AE与底面
所成角的正弦值.
![]()
【解析】第一问中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
![]()
解
(Ⅰ) 证明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,
又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已证
平面PBC,所以
,即
,
故
,
于是![]()
所以直线AE与底面ABC 所成角的正弦值为![]()
![]()
(本题10分)
(1)化简
;
(2)
,(1)求
的值。
(本题10分)已知指数函数
满足:g(2)=4,定义域为
的函数
是奇函数。
(1)确定
的解析式;
(2)求m,n的值;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围。
(本题10分)
已知
(
),
(1)当
时,求
的值;
(2)设
,试用数学归纳法证明:
当
时,
。
(本题10分)已知函数
是奇函数,且
.
(1)求函数
的解析式;
(2)求函数
在区间
上的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com