3.万能公式的推导 1° 2° 3° [精典范例] 例1已知.求3cos 2q + 4sin 2q 的值. 例2已知.化简. 例3已知..tana =.tanb =.求2a + b . 例4已知sina - cosa = ..求和tana的值. 例5已知cosa - cos b = .sina - sinb = .求sin的值. 例6已知A.B.C是三角形的内角.. (1)问任意交换两个角的位置.y的值是否变化?试证明你的结论. (2)求y 的最大值. 思维点拔: 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知某校5个学生的数学和物理成绩如下表

学生的编号

1

2

3

4

5

数学

80

75

70

65

60

物理

70

66

68

64

62

(1)假设在对这名学生成绩进行统计时,把这名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有名学生的物理成绩是自己的实际分数的概率是多少?

(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求的回归方程;

(3)利用残差分析回归方程的拟合效果,若残差和在范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.

参考数据和公式:,其中,残差和公式为:

查看答案和解析>>

(本小题满分12分)已知某校5个学生的数学和物理成绩如下表

学生的编号

1

2

3

4

5

数学

80

75

70

65

60

物理

70

66

68

64

62

(1)假设在对这名学生成绩进行统计时,把这名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有名学生的物理成绩是自己的实际分数的概率是多少?

(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求的回归方程;

(3)利用残差分析回归方程的拟合效果,若残差和在范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.

参考数据和公式:,其中,残差和公式为:

查看答案和解析>>

已知某校5个学生的数学和物理成绩如下表

学生的编号

1

2

3

4

5

数学

80

75

70

65

60

物理

70

66

68

64

62

(1)假设在对这名学生成绩进行统计时,把这名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有名学生的物理成绩是自己的实际分数的概率是多少?

(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求的回归方程;

(3)利用残差分析回归方程的拟合效果,若残差和在范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.

参考数据和公式:,其中,

残差和公式为:

查看答案和解析>>

已知某校5个学生的数学和物理成绩如下:
学生的编号 1 2 3 4 5
数学成绩xi 80 75 70 65 60
物理成绩yi 70 66 68 64 62
(Ⅰ)通过大量事实证明发现,一个学生的数学成绩和物理成绩是具有很强的线性相关关系的,在上述表格中,用x表示数学成绩,用y表示物理成绩,求y关于x的回归方程;
(Ⅱ)利用残差分析回归方程的拟合效果,若残差和在(-0.1,0.1)范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
提示:参考数据:
5
i=1
xiyi=23190
5
i=1
x
2
i
=24750

查看答案和解析>>

某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如下图所示.

(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;

区间

[25,30)

[30,35)

[35,40)

[40,45)

[45,50]

人数

50

50

150

(Ⅱ) 现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?

(III)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

 

查看答案和解析>>


同步练习册答案