题目列表(包括答案和解析)
(本题满分13分)
已知函数
,函数
的最小值为
.
(1)求
的解析式;
(2)是否存在实数
同时满足下列两个条件:①
;②当
的定义域为
时,值域为
?若存在,求出
的值;若不存在,请说明理由.
已知![]()
(1)求函数
在
上的最小值
(2)对一切的
恒成立,求实数a的取值范围
(3)证明对一切
,都有
成立
【解析】第一问中利用
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
![]()
第二问中,
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
第三问中问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
解:(1)
当
时,
在
单调递减,在
单调递增
,当![]()
,即
时,
,![]()
…………4分
(2)
,则
设
,
则
,
单调递增,
,
,
单调递减,
,因为对一切
,
恒成立,
…………9分
(3)问题等价于证明
,
,
由(1)可知
,
的最小值为
,当且仅当x=
时取得
设
,
,则
,易得![]()
。当且仅当x=1时取得.从而对一切
,都有
成立
( 本题满分12分) 已知函数![]()
![]()
(1)求
的最小正周期、单调增区间、对称轴和对称中心;
(2)该函数图象可由
的图象经过怎样的平移和伸缩变换得到?
已知函数
,函数
的最小值为
.
(1)求
的解析式;
(2)是否存在实数
同时满足下列两个条件:①
;②当
的定义域为
时,值域为
?若存在,求出
的值;若不存在,请说明理由.
(本小题满分12分)
已知函数
.
⑴求函数
的最小值;
⑵若
≥0对任意的
恒成立,求实数a的值;
⑶在⑵的条件下,证明:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com