19.如下的三个图中.上面的是一个长方体截去一个角所得多面体的直观图.它的正视图和侧视图在下面画出. (Ⅰ)在正视图下面.按照画三视图的要求画出该多面体的俯视图, (Ⅱ)按照给出的尺寸.求该多面体的体积, (Ⅲ)在所给直观图中连结.证明:∥面EFG. 正视图 侧视图 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

如下图,某地有三家工厂,分别位于矩形ABCD 的顶点A、B 及CD的中点P 处,已知AB=20km,CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A、B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO、BO、OP ,设排污管道的总长度为km.

(1)按下列要求写出函数关系式:         

①设∠BAO=(rad),将表示成的函数;

②设OP(km) ,将表示成的函数.

(2)请选用(1)中的一个函数关系式,确定污水处理厂的位置,使铺设的排污管道总长度最短.

 

查看答案和解析>>

(本题满分12分) (I)对于计算值的一个算法,其算法步骤如下:

     第一步,令

     第二步,若  (1)   成立,则执行第三步;否则,输出,并结束算法 。

     第三步,计算

     第四步,计算,返回第二步。

   在算法步骤中 (1) 处填上合适的条件,使之能完成该题算法功能(请写在答题卷上);

  (II)画出输入一个正整数,求值的程序框图。

查看答案和解析>>

(本题满分12分)在长方体中,,用过三点的平面截去长方体的一个角后,留下如图的几何体,且这几何体的体积为120.
(1)求棱的长;
(2)求点到平面的距离.

查看答案和解析>>

(本题满分12分)

如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:

(Ⅰ)在正视图下面,按照画三视图的要求画出该多面体的俯视图;

(Ⅱ)按照给出的尺寸,求该多面体的体积;

(Ⅲ)在所给直观图中连结,证明:∥面

 

查看答案和解析>>

(本题满分12分)

如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:

(Ⅰ)在正视图下面,按照画三视图的要求画出该多面体的俯视图;

(Ⅱ)按照给出的尺寸,求该多面体的体积;

(Ⅲ)在所给直观图中连结,证明:∥面

查看答案和解析>>

一、选择题

1.D. 2.A.  3.B.  4.C.  5.B.  6.A.

7.C.  8.D.  9.D.  10.C.  11.B. 12.B.

二、填空题:

13.. 14.5.  15..   16.②.

三、解答题:本大题共6小题,共74分.解答应写出文字说明.证明过程或演算步骤.

17.本题主要考查两角和与差的三角函数公式、二倍角公式,三角函数的图象与性质等基础知识;考查运算求解能力.满分12分.

        

.

时,f(x)单调递增.

   ∴f(x)的单调递增区间为[].

18.(1)记“编号的和为”的事件,事件所包含的基本事件为,共5个, ∴

(2)记“甲赢”为事件,事件所包含的基本事件为,共13个, ∴

19.本题主要考查空间几何体的直观图、三视图,空间线面的位置关系等基础知识;考查空间想像能力及推理论证能力.满分12分.
(Ⅰ)如图

      俯视图

(Ⅱ)所求多面体的体积
.
(Ⅲ)证明:如图,在长方体中,连接,则.

因为E,G分别为的中点,
所以,从而.
,所以∥平面EFG.

20. 本题主要考查等差数列、数列求和等基础知识;考查推理论证与运算求解能力;考查化归与转化思想.满分12分.

(Ⅰ)设数列{an}的公差为d,则

解得

因此,an=-1+2(n-1)=2n-3.
(Ⅱ)由已知    (1)得,

当n≥2时,   (2).

由(1)-(2)得

所以,又

.

在式(1)中,令n=1得,

,故.

所以.

21.本题主要考查直线与椭圆的位置关系等基础知识;考查运算求解能力及化归与转化思想.满分12分.
(Ⅰ)由题设b=,c=2,从而a2=b2+c2=6,
所以椭圆C的方程为.

(Ⅱ)假设斜率为k的直线l与椭圆C交于A、B两点,使得∠AOB为锐角,

设直线l的方程为y=k(x - 2).


 

所以满足题意的的直线l存在,斜率k的取值范围为

方法二: 同方法一得到.

所以满足题意的的直线l存在,斜率k的取值范围为

22.本题主要考查利用导数研究函数的性质,考查运算求解能力及数形结合思想.满分14分.
(Ⅰ),由得,
    ,解得.
(Ⅱ)由(Ⅰ)知,
,
.
时,
时,

时,.
所以的单调增区间是的单调减区间是.
(Ⅲ)由(Ⅱ)知,内单调递增,在内单调递减,在上单调递增,且当时,.
所以的极大值为,极小值为.
又因为,
.

当且仅当,直线的图象有三个交点.
所以,的取值范围为.

 

 

 


同步练习册答案