解: .对反复使用上述关系式.得 . ① 在①式两端同乘.得 ② ②①.得 . 即. 如果记.. 则. 其中是以为首项.以为公比的等比数列,是以为首项.为公差的等差数列. 查看更多

 

题目列表(包括答案和解析)

某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单
价x元与日销售量y件之间有如下关系:
销售单价x(元) 30 40 45 50
日销售量y(件) 60 30 15 0
(Ⅰ)在平面直角坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定x与y的一个函数关系式y=f(x)
(Ⅱ)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x的函数关系式,并指出销售单价x为多少时,才能获得最大日销售利润.

查看答案和解析>>

某商场一批进价30元/件的商品,在市场试销中发现,此商品的销售单价x元,与件数y(件)之间有如下关系:
x 30 40 45 50
y 60 40 15 0
(I)在所给的平面直角坐标系中,根据表中的数据做出实数对(x,y)对应的点,猜想它们之间的函数关系,并确定y与x的一个函数关系;
(II)设经营此商品的日销售利润为p(元),根据上述关系式写出p关于x的函数关系式,并求销售单价x为多少时,日销售利润最大?

查看答案和解析>>

 

(14分)某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单

元与日销售量件之间有如下关系:

销售单价(元)

30

40

45

50

日销售量(件)

60

30

15

0

(1)   在所给坐标系中,根据表中提供的数据描出实数对对应的点,并确定的一个函数关系式;www.zxxk.com

(2)设经营此商品的日销售利润为元,根据上述关系式写出关于的函数关系式,并指出销售单价为多少时,才能获得最大日销售利润。

 

查看答案和解析>>

某商场经营一批进价是每件30元的商品,在市场销售中发现此商品的销售单
价x元与日销售量y件之间有如下关系:
销售单价x(元)30404550
日销售量y(件)603015
(Ⅰ)在平面直角坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定x与y的一个函数关系式y=f(x)
(Ⅱ)设经营此商品的日销售利润为P元,根据上述关系式写出P关于x的函数关系式,并指出销售单价x为多少时,才能获得最大日销售利润.

查看答案和解析>>

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>


同步练习册答案