求证:在区间上是减函数. 证明:设.则 ∴ 即 故在区间上是减函数. [选修延伸] 如果一个函数有两个单调区间.两个区间一般不取并集: 例3: 函数在其定义域上是减函数吗? 分析:单调区间的判断目前只有通过定义进行说明.如果要说明这个命题是真命题时我们要给出严格的定义证明.而如果要说明这个命题是假命题.我们只要举一组不满足定义的.并加以说明. [解] 该命题是假命题,例如时. .显然且.所以"函数在其定义域上是减函数"是不成立的. 点评: 查看更多

 

题目列表(包括答案和解析)

在区间D上,如果函数f(x)为增函数,而函数
1
x
f(x)
为减函数,则称函数f(x)为“弱增函数”.已知函数f(x)=1-
1
1+x

(1)判断函数f(x)在区间(0,1]上是否为“弱增函数”;
(2)设x1,x2∈[0,+∞),且x1≠x2,证明:|f(x2)-f(x1)|<
1
2
|x1-x2|

(3)当x∈[0,1]时,不等式1-ax≤
1
1+x
≤1-bx恒成立,求实数a,b的取值范围.

查看答案和解析>>

函数y=f(x)在区间(0,+∞)内可导.导函数f(x)是减函数,且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在点(x0,f(x0))处的切线方程.
(1)用x0,f(x0),f(x0)表示m;
(2)证明:当x∈(0,+∞)时,g(x)≥f(x);
(3)若关于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b为实数,求b的取值范围及a,b所满足的关系.

查看答案和解析>>

函数f(x)是定义在(-1,1)上的奇函数,
①已知f(x)是单调减函数,求不等式f(1-a)+f(1-a2)<0的解;
②已知f(x)在区间[0,1)上是减函数,证明:f(x)是单调减函数.

查看答案和解析>>

函数f(x)是定义在(-1,1)上的奇函数,
①已知f(x)是单调减函数,求不等式f(1-a)+f(1-a2)<0的解;
②已知f(x)在区间[0,1)上是减函数,证明:f(x)是单调减函数.

查看答案和解析>>

函数f(x)是定义在(-1,1)上的奇函数,
①已知f(x)是单调减函数,求不等式f(1-a)+f(1-a2)<0的解;
②已知f(x)在区间[0,1)上是减函数,证明:f(x)是单调减函数.

查看答案和解析>>


同步练习册答案