解:(Ⅰ) ,在上是增函数.在上是减函数, 查看更多

 

题目列表(包括答案和解析)

 

已知上是增函数,在上是减函数,且有三个根

(I)求的值,并求出的取值范围;

(Ⅱ)求证:

(Ⅲ)求的取值范围,并写出当取最小值时的的解析式。

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

设函数

(1)当时,求曲线处的切线方程;

(2)当时,求的极大值和极小值;

(3)若函数在区间上是增函数,求实数的取值范围.

【解析】(1)中,先利用,表示出点的斜率值这样可以得到切线方程。(2)中,当,再令,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了在区间导数恒大于等于零,分离参数求解范围的思想。

解:(1)当……2分

   

为所求切线方程。………………4分

(2)当

………………6分

递减,在(3,+)递增

的极大值为…………8分

(3)

①若上单调递增。∴满足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

时,不合题意。综上所述,实数的取值范围是

 

查看答案和解析>>

已知函数f(x)=x2-alnx在(1,2)上是递增函数,g(x)=x-a
x
在(0,1)上为减函数.
(1)求f(x),g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解;
(3)当b>-1时,若f(x)≥2bx-
1
x2
在x∈(0,1)内恒成立,求b的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+
1
2
sinθx2-2x+c的图象经过点(1,
37
6
)
,且在区间(-2,1)上单调递减,在[1,+∞)上单调递增.
(1)证明sinθ=1;
(2)求f(x)的解析式;
(3)若对于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤
45
2
恒成立,试问:这样的m是否存在,若存在,请求出m的范围;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)命题P:函数f(x)在区间[(a+1)2,+∞) 上是增函数; 命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>


同步练习册答案