题目列表(包括答案和解析)
(本题满分15分)如图,在由圆O:
和椭圆C:
构成的“眼形”结构中,已知椭圆的离心率为
,直线
与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线
,使得
,若存在,求此时直线
的方程;若不存在,请说明理由.
(本小题满分15分)
如图,已知椭圆
过点
,离心率为
,左、右焦点分别为
、
。点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
.
(i)证明:
;
(ii)问直线
上是否存在点
,使得直线
、
、
、
的斜率
、
、
、
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
(本小题满分15分)如图,已知椭圆
:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线
于点M,N为
的中点.
(1)求椭圆
的方程;
(2)证明:Q点在以
为直径的圆
上;
(3)试判断直线QN与圆
的位置关系.
(本小题满分15分)如图,已知椭圆
:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线
于点M,N为
的中点.
(1)求椭圆
的方程;
(2)证明:Q点在以
为直径的圆
上;
(3)试判断直线QN与圆
的位置关系.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com