(Ⅱ)因为且m:2.所以2=4,即x+4 =0,这就是直线l的方程 -------- 查看更多

 

题目列表(包括答案和解析)

已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,为数列的前n项和.

(1)求数列的通项公式和数列的前n项和

(2)若对任意的,不等式恒成立,求实数的取值范围;

(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.

【解析】第一问利用在中,令n=1,n=2,

   即      

解得,, [

时,满足

第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

第三问

     若成等比数列,则

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

时,满足

(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.   

 ,等号在n=2时取得.

此时 需满足.  

②当n为奇数时,要使不等式恒成立,即需不等式恒成立.     

 是随n的增大而增大, n=1时取得最小值-6.

此时 需满足

综合①、②可得的取值范围是

(3)

     若成等比数列,则

即.

,可得,即

,且m>1,所以m=2,此时n=12.

因此,当且仅当m=2, n=12时,数列中的成等比数列

 

查看答案和解析>>

抛物线P:x2=2py上一点Q(m,2)到抛物线P的焦点的距离为3,A、B、C、D为抛物线的四个不同的点,其中A、D关于y轴对称,D(x0,y0),B(x1,y1),C(x2,y2),-x0<x1<x0<x2,直线BC平行于抛物线P的以D为切点的切线.
(1)求p的值;
(2)证明:∠BAC的角平分线在直线AD上;
(3)D到直线AB、AC的距离分别为m、n,且m+n=
2
|AD|
,△ABC的面积为48,求直线BC的方程.

查看答案和解析>>

已知集合M={a,0},N={1,2}且M∩N={2},那么M∪N=(  )

查看答案和解析>>

已知函数f(x)的定义域为R,且对任意实数x满足f(x)=-f(4-x),当x≤2时,f(x)单调递增,已知m+n<4,且m<2,且n>2,则f(m)+f(n)的值(  )

查看答案和解析>>

已知函数f(x)=2x-
a
2x

(1)将y=f(x)的图象向右平移两个单位,得到函数y=g(x),求y=g(x)的解析式;
(2)函数y=h(x)与函数y=g(x)的图象关于直线y=1对称,求y=h(x)的解析式;
(3)设F(x)=
1
a
f(x)+h(x)F(x)的最小值是m,且m>2+
7
,求实数a的取值范围.

查看答案和解析>>


同步练习册答案