题目列表(包括答案和解析)
设函数![]()
(1)当
时,求曲线
处的切线方程;
(2)当
时,求
的极大值和极小值;
(3)若函数
在区间
上是增函数,求实数
的取值范围.
【解析】(1)中,先利用
,表示出点
的斜率值
这样可以得到切线方程。(2)中,当
,再令
,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了
在区间
导数恒大于等于零,分离参数求解范围的思想。
解:(1)当
……2分
∴![]()
即
为所求切线方程。………………4分
(2)当![]()
令
………………6分
∴
递减,在(3,+
)递增
∴
的极大值为
…………8分
(3)![]()
①若
上单调递增。∴满足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数
的取值范围是![]()
椭圆
=1(a>b>0)的左右焦点分别为F1,F2,过焦点F1的倾斜角为30°直线交椭圆于A,B两点,弦长|AB|=8,若三角形ABF2的内切圆的面积为π,则椭圆的离心率为
![]()
![]()
![]()
![]()
![]()
(1)若以l0为一条准线,中心在坐标原点的椭圆恰与直线l也相切,切点为T,求椭圆的方程及点T的坐标;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且(
)p2=m,m∈[
,
],求(1)中切点T到直线PQ的距离的最小值.
(文)如图,与抛物线x2=-4y相切于点A(-4,-4)的直线l分别交x轴、y轴于点F、E,过点E作y轴的垂线l0.
![]()
(1)若以l0为一条准线,中心在坐标原点的椭圆恰好过点F,求椭圆的方程;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且(
)p2=m,m∈[
,
],求直线PQ的斜率的取值范围.
(1)若以l0为一条准线,中心在坐标原点的椭圆恰与直线l也相切,切点为T,求椭圆的方程及点T的坐标;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且
p2=m,m∈
,求(1)中切点T到直线PQ的距离的最小值.
![]()
(文)如图,与抛物线x2=-4y相切于点A(-4,-4)的直线l分别交x轴、y轴于点F、E,过点E作y轴的垂线l0.
(1)若以l0为一条准线,中心在坐标原点的椭圆恰好过点F,求椭圆的方程;
(2)若直线l与双曲线6x2-λy2=8的两个交点为M、N,且点A为线段MN的中点,又过点E的直线与该双曲线的两支分别交于P、Q两点,记
在x轴正方向上的投影为p,且
=m,m∈
,求直线PQ的斜率的取值范围.
![]()
已知
为椭圆
:
的左、右焦点,过椭圆右焦点F2斜率为
(
)的直线
与椭圆
相交于
两点,
的周长为8,且椭圆C与圆
相切。
(1)求椭圆
的方程;
(2)设
为椭圆的右顶点,直线
分别交直线
于点
,线段
的中点为
,记直线
的斜率为
,求证
为定值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com