又AB侧面A1ABB1.故AB⊥BC.(Ⅱ)证法1:连接CD,则由(Ⅰ)知∠ACD就是直线AC与平面A1BC所成的角.∠ABA1就是二面角A1-BC-A的平面角.即∠ACD=θ.∠ABA1=j. 查看更多

 

题目列表(包括答案和解析)

(2010•抚州模拟)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又顶点A1在底面ABC上的射影落在AC上,侧棱AA1与底面ABC成60°角,D为AC的中点.
(1)求证:BD⊥AA1
(2)如果二面角A1-BD-C1为直二面角,试求侧棱CC1与侧面A1ABB1的距离.

查看答案和解析>>

如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;

(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.

【解析】第一问中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

 (Ⅰ) 证明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,

因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,

又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已证平面PBC,所以,即,

,

于是

所以直线AE与底面ABC 所成角的正弦值为

 

查看答案和解析>>

在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又顶点A1在底面ABC上的射影落在AC上,侧棱AA1与底面ABC成60°角,D为AC的中点.
(1)求证:BD⊥AA1
(2)如果二面角A1-BD-C1为直二面角,试求侧棱CC1与侧面A1ABB1的距离.

查看答案和解析>>

精英家教网如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若AA1=AC=a,直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,求证:θ+φ=
π2

查看答案和解析>>

(2012•肇庆一模)如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
3
,AB=2
2
,AA1=A1C=
6

(Ⅰ) 求侧棱B1B在平面A1ACC1上的正投影的长度.
(Ⅱ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅲ) 求侧面A1ABB1与底面ABC所成二面角的余弦值.

查看答案和解析>>


同步练习册答案