即时.不等式成立. 查看更多

 

题目列表(包括答案和解析)

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>

给出下列命题:

①a,b都为正数时,不等式a+b≥2才成立。

②y=x+的最小值为2。

③y=sinx+()的最小值为2.

④当x>0时,y=x2+16x≥2,当x2=16x时,即x=16,y取最小值512。

其中错误的命题是          

查看答案和解析>>

 给出下列命题:

①a,b都为正数时,不等式a+b≥2才成立。

②y=x+的最小值为2。

③y=sinx+()的最小值为2.

④当x>0时,y=x2+16x≥2,当x2=16x时,即x=16,y取最小值512。

其中错误的命题是          

 

查看答案和解析>>

 

上海世博会于2010年5月1日正式开幕,按规定个人参观各场馆需预约,即进入园区后持门票当天预约,且一张门票每天最多预约六个场馆。考虑到实际情况(排队等待时间等),张华决定参观甲、乙、丙、丁四个场馆。假设甲、乙、丙、丁四个场馆预约成功的概率分别是且它们相互独立互不影响。

(1)求张华能成功预约甲、乙、丙、丁中两个场馆的概率;

(2)用表示能成功预约场馆的个数,求随机变量的分布列和数学期望。

 

 

 

 

 

 

查看答案和解析>>

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>


同步练习册答案