题目列表(包括答案和解析)
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 数 学 | 1.3 | 12.3 | 25.7 | 36.7 | 50.3 | 67.7 | 49.0 | 52.0 | 40.0 | 34.3 |
| 物 理 | 2.3 | 9.7 | 31.0 | 22.3 | 40.0 | 58.0 | 39.0 | 60.7 | 63.3 | 42.7 |
| 学生序号 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数 学 | 78.3 | 50.0 | 65.7 | 66.3 | 68.0 | 95.0 | 90.7 | 87.7 | 103.7 | 86.7 |
| 物 理 | 49.7 | 46.7 | 83.3 | 59.7 | 50.0 | 101.3 | 76.7 | 86.0 | 99.7 | 99.0 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
①教育局督学组到学校检查工作,需在高三年级的学号为001·800的学生中抽调![]()
人参加关于学校管理的综合座谈;②该校高三年级这
名
学生期中考试的数学成绩有160
在120分以上(包括
分),480人在120以下90分以上(包括90分),其余的在
分
以下,现欲从中抽出
人研讨进一步改进数学教和学的座谈;③该校高三年级这800名学
生参加2010年元旦聚会,要产生20名“幸运之星”.以上三件事,合适的抽样方法依次( )
A.系统抽样,分层抽样,系统抽样
B.系统抽样,系统抽样,简单随机抽样
C.分层抽样,简单随机抽样,简单随机抽样
D.系统抽样,分层抽样,简单随机抽样
(本小题满分12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.
(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
高中学生的作文水平与爱看课外书的2×2列联表
|
|
爱看课外书 |
不爱看课外书 |
总计 |
|
作文水平好 |
|
|
|
|
作文水平一般 |
[来源:学。科。网Z。X。X。K] |
|
|
|
总计 |
|
|
|
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.
参考公式:
,其中
.
参考数据:
|
|
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(08年杭州学军中学理) (14分) 某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有
次选题答题的机会,选手累计答对
题或答错
题即终止其初赛的比赛,答对
题者直接进入决赛,答错
题者则被淘汰.已知选手甲答题的正确率为
.
(1)求选手甲可进入决赛的概率;
(2)设选手甲在初赛中答题的个数为
,试写出
的分布列,并求
的数学期望.
一、选择题:本大题共10个小题,每小题5分,共50分.
题号
1
2
3
4
5
6
7
8
9
10
答案
C
B
C
D
C
B
A
D
B
A
二、填空题:本大题共4个小题,每小题4分,共16分.
11. 630 12. 2k 13.
14. ①②③
三、解答题:本大题共6个小题,每小题14分,共84分.
15.
(4分)
由题意得
16.
有分布列:

0
1
2
3
P




从而期望
17.(1)
又

(2) 


(3)DE//AB,
(4)设BB1的中点为F,连接EF、DF,则EF是DF在平面BB
因为BB

18.(1) 由题意得
(2) 
所以直线
的斜率为
令
,则直线
的斜率
,
19.(1)由韦达定理得


是首项为4,公差为2的等差数列。
(2)由(1)知
,则
原式左边=
=
=右式。故原式成立。
20.令x=y=0,有
,令y=-x则
得
故(1)得证。
(2)在R上任取x1,x2且
,且
,
所以
在R上单调递增;
(3)
由
得
;
由
得
;因为
,
所以
无解,即圆心到直线的距离大于或等于半径2,只需
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com