2.已知:p:x+y≠-2 q:x,y不都是-1.则p是q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 查看更多

 

题目列表(包括答案和解析)

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当0<x<
12
时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集).

查看答案和解析>>

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当0<x<
1
2
时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩CRB(R为全集).

查看答案和解析>>

已知f是直角坐标平面xOy到自身的一个映射,点P在映射f下的象为点Q,记作Q=f(P).设P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一个圆,使所有的点Pn(xn,yn)(n∈N*)都在这个圆内或圆上,那么称这个圆为点Pn(xn,yn)的一个收敛圆.特别地,当P1=f(P1)时,则称点P1为映射f下的不动点.若点P(x,y)在映射f下的象为点Q(-x+1,
12
y)

(Ⅰ)求映射f下不动点的坐标;
(Ⅱ)若P1的坐标为(2,2),求证:点Pn(xn,yn)(n∈N*)存在一个半径为2的收敛圆.

查看答案和解析>>

已知定义在正实数集R上的函数y=f(x)满足:①对任意a,b∈R都有f(a•b)=f(a)+f(b)②当x>1时,f(x)<0   ③f(3)=-1
(1)求f(1)的值
(2)证明函数y=f(x)在R上为单调减函数
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(
p
q
)+
1
2
=0,p,q∈R+},问是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在则说明理由.

查看答案和解析>>

已知f是直角坐标平面xOy到自身的一个映射,点P在映射f下的象为点Q,记作Q=f(P).
设P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一个圆,使所有的点Pn(xn,yn)(n∈N*)都在这个圆内或圆上,那么称这个圆为点Pn(xn,yn)的一个收敛圆.特别地,当P1=f(P1)时,则称点P1为映射f下的不动点.
(Ⅰ) 若点P(x,y)在映射f下的象为点Q(2x,1-y).
①求映射f下不动点的坐标;
②若P1的坐标为(1,2),判断点Pn(xn,yn)(n∈N*)是否存在一个半径为3的收敛圆,并说明理由.
(Ⅱ) 若点P(x,y)在映射f下的象为点Q(
x+y
2
+1,
x-y
2
)
,P1(2,3).求证:点Pn(xn,yn)(n∈N*)存在一个半径为
5
的收敛圆.

查看答案和解析>>


同步练习册答案