题目列表(包括答案和解析)
已知曲线
的参数方程是
(
是参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
:的极坐标方程是
=2,正方形ABCD的顶点都在
上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,
).
(Ⅰ)求点A,B,C,D的直角坐标;
(Ⅱ)设P为
上任意一点,求
的取值范围.
【命题意图】本题考查了参数方程与极坐标,是容易题型.
【解析】(Ⅰ)由已知可得
,
,
,
,
即A(1,
),B(-
,1),C(―1,―
),D(
,-1),
(Ⅱ)设
,令
=
,
则
=
=
,
∵
,∴
的取值范围是[32,52]
已知
,设![]()
和
是方程
的两个根,不等式
对任意实数
恒成立;
函数
有两个不同的零点.求使“P且Q”为真命题的实数
的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3. 当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|=
=
.
当a∈[1,2]时,
的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+
=0的判别式
Δ=4m2-12(m+
)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即![]()
解得实数m的取值范围是(4,8]
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=
-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-
,又a<0,
∴a的取值范围是![]()
已知函数
,
(1)设常数
,若
在区间
上是增函数,求
的取值范围;
(2)设集合
,
,若
,求
的取值范围.
【解析】本试题主要考查了三角函数的性质的运用以及集合关系的运用。
第一问中利用
![]()
利用函数的单调性得到,参数的取值范围。
第二问中,由于
解得参数m的取值范围。
(1)由已知
![]()
又因为常数
,若
在区间
上是增函数故参数![]()
(2)因为集合
,
,若![]()
设函数f(x)=
在[1,+∞
上为增函数.
(1)求正实数a的取值范围;
(2)比较
的大小,说明理由;
(3)求证:
(n∈N*, n≥2)
【解析】第一问中,利用
解:(1)由已知:
,依题意得:
≥0对x∈[1,+∞
恒成立
∴ax-1≥0对x∈[1,+∞
恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=
在[1,+∞)上为增函数,
∴n≥2时:f(
)=
(3) ∵
∴![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com