②当N≠Φ.则.解得2≤a≤3. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

21.某公司全年的纯利润为b元,其中一部分作为奖金发给n位职工.奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小.由1至n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工.并将最后剩余部分作为公司发展基金.

 

(1)设ak(1≤kn)为第k位职工所得奖金额,试求a2a3,并用knb表示ak ;(不必证明)

 

(2)证明a ka k1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;

 

(3)发展基金与nb有关,记为Pnb).对常数b,当n变化时,求Pnb).

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.

(1)求n,m的关系式并求f(x)的单调减区间;

(2)证明:对任意实数0<x1<x2<1, 关于x的方程:

在(x1,x2)恒有实数解

(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:

当0<a<b时,(可不用证明函数的连续性和可导性)

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:数学公式在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得数学公式.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,数学公式(可不用证明函数的连续性和可导性).

查看答案和解析>>

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x,使得.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,(可不用证明函数的连续性和可导性).

查看答案和解析>>


同步练习册答案