设正整数数列满足:.当时.有. (I) 求.的值, (Ⅱ)求数列的通项, (Ⅲ) 记.证明.对任意. . 查看更多

 

题目列表(包括答案和解析)

设正整数数列{an}满足a1=2,a2=6,当n≥2时,有|
a
2
n
-an-1an+1| <  
1
2
an-1

(1)求a3的值;(2)求数列{an}的通项;
(3)记Tn=
12
a1
+
22
a2
+
32
a3
 +K+
n2
an
,证明:对任意n∈N*Tn
9
4

查看答案和解析>>

设正整数数列{an}满足a1=2,a2=6,当n≥2时,有
(1)求a3的值;(2)求数列{an}的通项;
(3)记,证明:对任意n∈N*

查看答案和解析>>

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21)

其中λ为实数,n为正整数.
(1)对任意实数λ,证明:数列{an}不是等比数列;
(2)证明:当λ≠18时,数列 {bn} 是等比数列;
(3)设Sn为数列 {bn} 的前n项和,是否存在实数λ,使得对任意正整数n,都有Sn>-12?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

已知数列{an}满足an=
n
n-1
an-1-
1
3
n•(
2
3
)n(n≥2,n∈N*)
,首项为a1=
4
9

(1)求数列{an}的通项公式;
(2)记bn=
n-an
3n-2an
,数列{bn}的前n项和为Tn,求证:
3n-4
9
Tn
n
3

(3)设数列{cn}满足c1=
1
2
cn+1=
(
2
3
)
k+1
ak
c
2
n
+cn
,其中k为一个给定的正整数,
求证:当n≤k时,恒有cn<1.

查看答案和解析>>

已知数列{an}和{bn}满足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(Ⅰ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅱ)设Sn为数列{bn}的前n项和,是否存在实数λ,使得对任意正整数n,都有Sn>-12?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>


同步练习册答案