0s-3.0s的v-t图如下所示. 查看更多

 

题目列表(包括答案和解析)

如图所示是建筑工地上常用的一种“深穴打夯机”,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,将夯杆释放,夯杆在自身重力作用下,落回深坑,夯实坑底,夯杆不反弹,设夯杆与坑底的接触时间为t=1.0s,然后两个滚轮再次压紧,将夯杆提上来,如此周而复始。已知两个滚轮边缘的线速度恒为v=4.0m/s,每个滚轮对夯杆的正压力均为F=2.0×104N,滚轮与夯杆间的动摩擦因数=0.30,夯杆质量m=1.0×103kg,坑深h=6.4m。假定在打夯的过程中坑的深度不变,g=10m/s2,求:

(1)从夯杆开始向上运动到刚开始匀速运动,夯杆上升的高度H是多少?
(2)每个打夯周期(从夯杆刚离开坑底到下一次夯杆刚离开坑底的时间)中,电动机对夯杆做的功W;
(3)打夯周期T。

查看答案和解析>>

如图所示是建筑工地上常用的一种“深穴打夯机”,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,将夯杆释放,夯杆在自身重力作用下,落回深坑,夯实坑底,夯杆不反弹,设夯杆与坑底的接触时间为t=1.0s,然后两个滚轮再次压紧,将夯杆提上来,如此周而复始。已知两个滚轮边缘的线速度恒为v=4.0m/s,每个滚轮对夯杆的正压力均为F=2.0×104N,滚轮与夯杆间的动摩擦因数=0.30,夯杆质量m=1.0×103kg,坑深h=6.4m。假定在打夯的过程中坑的深度不变,g=10m/s2,求:

(1)从夯杆开始向上运动到刚开始匀速运动,夯杆上升的高度H是多少?

(2)每个打夯周期(从夯杆刚离开坑底到下一次夯杆刚离开坑底的时间)中,电动机对夯杆做的功W;

(3)打夯周期T。

 

查看答案和解析>>

如图所示,质量为m的小球放在光滑水平面上,在界线MN的左方始终受到水平恒力F1作用,在MN的右方除受F1外还受到与F1在同一条直线上的水平恒力F2的作用。小球从A点由静止开始运动,运动的v-t图像如图所示,由图可知下列说法中不正确的是(    )

A . F1与F2的比值为1:2    

B. F1与F2的比值为3:5  

C. t=4. 0s时,小球经过界线MN              

D .小球向右运动的过程中, F1与F2做功的绝对值相等

 

查看答案和解析>>

如图所示,两条平行的金属导轨相距L=lm,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B2中,两部分磁场的大小均为0.5T。 金属棒MN和PQ的质量均为m=0.2kg,电阻分别为RMN=0.5Ω和RPQ=1.5Ω。MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。从t=0时刻起,MN棒在水平外力F1的作用下由静止开始以a=2m/s2的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态。不计导轨的电阻,水平导轨足够长,MN始终在水平导轨上运动。求:

(1)t=5s时,PQ消耗的电功率;

(2)t=0~2.0s时间内通过PQ棒的电荷量;

(3)规定图示F1F2方向作为力的正方向,分别求出F1F2随时间t变化的函数关系;

(4)若改变F1的作用规律,使MN棒的运动速度v与位移s满足关系:,PQ棒仍然静止在倾斜轨道上。求MN棒从静止开始到s=5m的过程中,F1所做的功。

 


查看答案和解析>>

如图所示,两根完全相同的光滑金属导轨OP、OQ固定在水平桌面上,导轨间的夹角为θ=74°,导轨单位长度的电阻为r0=0.10Ω/m。导轨所在空间有垂直于桌面向下的匀强磁场,且磁场随时间变化,磁场的磁感应强度B与时间t的关系为B=,其中比例系数k=2T·s。将电阻不计的金属杆MN放置在水平桌面上,在外力作用下,t=0时刻金属杆以恒定速度v=2m/s从O点开始向右滑动。在滑动过程中保持MN垂直于两导轨间夹角的平分线,且与导轨接触良好。(已知导轨和金属杆均足够长,sin37°=0.6,cos37°=0.8)问:
(1)t=6.0s时,回路中的感应电动势是__________V;
(2)t=6.0s时,金属杆MN所受安培力的大小是_________N;
(3)t=6.0s时,外力对金属杆MN所做功的功率是_________W。

查看答案和解析>>


同步练习册答案