19. 查看更多

 

题目列表(包括答案和解析)

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

(07年福建卷理)(本小题满分12分)在中,

(Ⅰ)求角的大小;

(Ⅱ)若最大边的边长为,求最小边的边长.

查看答案和解析>>

(07年福建卷文)(本小题满分12分)

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).

(I)求f (x)的最小值h(t);

(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.

查看答案和解析>>

(07年福建卷文)(本小题满分12分)

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,DCC1中点.

(I)求证:AB1⊥平面A1BD;

(II)求二面角A-A1D-B的大小.

查看答案和解析>>

一、选择题(60分)

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

C

B

(C

D

D

A

B

 

C

B

 

二、填空题(20分)

13.  15    14.5 15.   16.

三、解答题(70分)

17.(1)   ,∴,∴

           (5分)

(2)     

,∴,∴

                                                         (理10分)

18. (1)记“甲恰好投进两球”为事件A,则           (6分)

(2)记“甲比乙多投进两球”,其中“恰好甲投进两球且乙未投进”为事件,“恰好甲投进三球且乙投进一球”为事件,根据提议,互斥,(理12分)

19.(1)                     (6分)

(2)                                               (文12分)

(3)                                     (理12分)

20.(1)设数列的公比为,则

                                                                         (文6分,理4分)

(2)由(1)可知

所以数列是一个以为首项,1为公差的等差数列

                       (文12分,理8分)

(3)∵

∴当时,,即

  当时,,即

综上可知:时,时,       (理12分)

21. ⑴由已知

     

     所求双曲线C的方程为;

⑵设P点的坐标为,M,N的纵坐标分别为.

 

 

    

共线

同理

              

22.

(1)由题意得:

∴在;在;在

在此处取得极小值

由①②③联立得:

                                                         (6分)

(2)设切点Q

求得:,方程有三个根。

需:

故:

因此所求实数的取值范围为:                     (理12

 

 


同步练习册答案