A.种 B.种 C.种 D.种 查看更多

 

题目列表(包括答案和解析)

A,B,C,D,E,F6个同学和1个数学老师站成一排合影留念,数学老师穿白色文化衫,A,B和C,D分别穿白色和黑色文化衫,E和F分别穿红色和橙色文化衫.若老师站中间,穿着相同颜色文化衫的都不相邻,则不同的站法种数为
160
160

查看答案和解析>>

A、B、C、D、E五人住进编号为1,2,3,4,5的五个房间,每个房间只住一个人,则B不住2号房间,且B、C两人不住编号相邻房间的住法种数为
60
60

查看答案和解析>>

A,B,C,D四人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻),那么不同的排法有
12
12
种.

查看答案和解析>>

.将个不同的球放入个不同的盒中,每个盒内至少有个球,则不同的放法种数为(    )

A. 24               B. 36           C. 48               D. 96

 

查看答案和解析>>

.某种产品的合格率是,合格品中一级品率是,则这种产品的一级品率为(     )

A.           B.             C.            D.

 

查看答案和解析>>

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

答案

二、填空题:

11. ;      12. ;          13.

14. ;            15. ;        16. ③ ④ .

三、解答题:

17.解:(1)在中,由,得,  又由正弦定理: 得:.                                     ……………………4分

(2)由余弦定理:得:

,解得(舍去),所以.       ……8分

 

所以,

.                                      …………………12分

18.解:(1)依题意,双曲线的方程可设为:

                解之得:

所以双曲线的方程为:.                  ……………………6分

(2)设,直线轴交于点,此点即为双曲线的右焦点,由   消去,得

此方程的

所以两点分别在左、右支上,不妨设在左支、在右支上   ………9分

则由第二定义知:,     …………11分

所以

,即. ………14分

(亦可求出的坐标,用两点间距离公式求.)

 

19.(1)当点的中点时,与平面平行.

∵在中,分别为的中点

   又平面,而平面 

    ∴∥平面.                              ……………………4分

 

(2)证明(略证):易证平面,又在平面内的射影,,∴.                         ……………………8分

 (3)∵与平面所成的角是,∴.

,连,则.     …………………10分

易知:,设,则

中,

.                 ………14分

 

 

 

解法二:(向量法)(1)同解法一

(2)建立图示空间直角坐标系,则,                          .

,则

      ∴   (本小题4分)

(3)设平面的法向量为,由

得:

依题意,∴

.                             (本小题6分)

 

20.解:(1)

∴可设

因而   ①

  得          ②

∵方程②有两个相等的根,

,即  解得 

由于(舍去),将 代入 ①  得 的解析式.                                …………………6分

(2)=

在区间内单调递减,

上的函数值非正,

由于,对称轴,故只需,注意到,∴,得(舍去)

故所求a的取值范围是.                     …………………11分

 (3)时,方程仅有一个实数根,即证方程 仅有一个实数根.令,由,得,易知上递增,在上递减,的极大值的极小值,故函数的图像与轴仅有一个交点,∴时,方程仅有一个实数根,得证.                                    ……………………16分

 

21.解:(1),                        ……………………1分

=.                      ……………………4分

(2),           ……………………5分

,………7分

∴数列为首项,为公比的等比数列.       ……………………8分

(3)由(2)知, Sn =, ……………9分

=∵0<<1,∴>0,,0<<1,

,                                     ……………………11分

又当时,,∴, ……………………13分

<.……14分

 


同步练习册答案