设点M的坐标为(x.y).由 查看更多

 

题目列表(包括答案和解析)

设动点M的坐标为(x,y)(x、y∈R),向量=(x-2,y),=(x+2,y),且|a|+|b|=8,
(I)求动点M(x,y)的轨迹C的方程;
(Ⅱ)过点N(0,2)作直线l与曲线C交于A、B两点,若(O为坐标原点),是否存在直线l,使得四边形OAPB为矩形,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

设动点M的坐标为(x,y)(x、y∈R),向量=(x-2,y),=(x+2,y),且|a|+|b|=8,
(I)求动点M(x,y)的轨迹C的方程;
(Ⅱ)过点N(0,2)作直线l与曲线C交于A、B两点,若(O为坐标原点),是否存在直线l,使得四边形OAPB为矩形,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

设x,y∈R,
i
j
、为直角坐标系内x、y轴正方向上的单位向量,若
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
a
2+
b
2=16.
(1)求点M(x,y )的轨迹C的方程;
(2)过定点(0,3)作直线l与曲线C交于A、B两点,设
OP
=
OA
+
OB
,是否存在直线l使四边形OAPB为正方形?若存在,求出l的方程,若不存在说明理由.

查看答案和解析>>

设x,y∈R,
i
j
,为直角坐标平面内x轴,y轴正方向上的单位向量,若向量
a
=x
i
+(y+2)
j
b
=x
i
+(y-2)
j
,且|
a
|+|
b
|=8.
(1)求点M(x,y)的轨迹C的方程;
(2)过点(0,3)作直线l与曲线C交于A、B两点.设
OP
=
OA
+
OB
,是否存在这样的直线l,使得四边形OAPB为菱形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

xy∈R,i,j为直角坐标平面内xy轴正方向上的单位向量,若向量bxi+(y-2)j,且|a|+|b|=8.

   (1)求点Mxy)的轨迹C的方程;

 (2)过点(0,3)作直线l与曲线C交于AB两点,设是否存在这样的直线l,使得四边形OAPB为矩形?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>


同步练习册答案