题目列表(包括答案和解析)
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机地分成两组。每组100只,其中一组注射药物A,另一组注射药物B。下表1和表2分别是注射药物A和药物B后的实验结果。(疱疹面积单位:
)
表1:注射药物A后皮肤疱疹面积的频数分布表
|
疱疹面积 |
|
|
|
|
|
频数 |
30 |
40 |
20 |
10 |
|
频率/组距 |
|
|
|
|
表2:注射药物B后皮肤疱疹面积的频数分布表
|
疱疹面积 |
|
|
|
|
|
|
频数 |
10 |
25 |
20 |
30 |
15 |
|
频率/组距 |
|
|
|
|
|
(1) 完成上面两个表格及下面两个频率分布直方图;
![]()
(2)完成下面
列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”。 (结果保留4位有效数字)
|
|
疱疹面积小于70 |
疱疹面积不小于70 |
合计 |
|
注射药物A |
a= |
b= |
|
|
注射药物B |
c= |
d= |
|
|
合计 |
|
|
n= |
附:
|
P(K2≥k) |
0.10 |
0.05 |
0.025 |
0.010 |
0.001 |
|
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
;
【解析】根据已知条件,得到
列联表中的a,b,c,d的值,代入已知的公式中
![]()
然后求解值,判定两个分类变量的相关性。
解:![]()
由于K2≥10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”
欧拉(Euler),瑞士数学家及自然科学家.1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国彼得堡去逝.欧拉出生于牧师家庭,自幼受父亲的教育,13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位.
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界做出了巨大的贡献,更把数学推至几乎整个物理的领域.他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学中的经典著作.
欧拉对数学符号的创立及推广起了积极的作用.比如用e表示自然对数的底,用i表示-1,用f(x)作为函数的符号,π虽不是欧拉首先提出的,但是在欧拉倡导下推广普及的.尤为不可思议的是欧拉将数学中最为活跃的五个数1,0,π,e,i竟用一个美妙绝伦的公式联系了起来:eiπ+1=0(欧拉指数公式),在西方数学界甚至认为此公式不亚于神的力量.
欧拉对数学的研究如此广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理.
1.你对欧拉(Euler)了解吗?请查阅欧拉(Euler)的故事,对于他“13岁时入读巴塞尔大学,15岁大学毕业,16岁获硕士学位”,你有何感触?
2.作为新时代的青年,你做好将来为科学事业做贡献的思想准备了吗?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com