题目列表(包括答案和解析)
已知过点
的动直线
与抛物线
相交于
两点.当直线
的斜率是
时,
.
(1)求抛物线
的方程;
(2)设线段
的中垂线在
轴上的截距为
,求
的取值范围.
【解析】(1)B
,C
,当直线
的斜率是
时,
的方程为
,即
(1’)
联立
得
,
(3’)
由已知
,
(4’)
由韦达定理可得
G方程为
(5’)
(2)设
:
,BC中点坐标为
(6’)
得
由
得
(8’)
![]()
BC中垂线为
(10’)
![]()
(11’)
![]()
![]()
过抛物线![]()
![]()
的对称轴上的定点
,作直线
与抛物线相交于
两点.
(I)试证明
两点的纵坐标之积为定值;
(II)若点
是定直线
上的任一点,试探索三条直线
的斜率之间的关系,并给出证明.
【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
(1)中证明:设
下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得
![]()
(2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之
设点N(-m,n),则直线AN的斜率KAN=
,直线BN的斜率KBN=![]()
![]()
KAN+KBN=
+![]()
本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.
设双曲线
的两个焦点分别为
、
,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点
能否作出直线
,使
与双曲线
交于
、
两点,且
,若存在,求出直线方程,若不存在,说明理由.
【解析】(1)根据离心率先求出a2的值,然后令双曲线等于右侧的1为0,解此方程可得双曲线的渐近线方程.
(2)设直线l的方程为
,然后直线方程与双曲线方程联立,消去y,得到关于x的一元二次方程,利用韦达定理
表示此条件,得到关于k的方程,解出k的值,然后验证判别式是否大于零即可.
如图,已知直线
(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求
与
的值;
(Ⅱ)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点
所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
![]()
【解析】第一问中利用圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,![]()
第二问中,由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴
因为
是定点,所以点
在定直线![]()
第三问中,设直线
,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去). …………………(2分)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴
因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com