已知函数f(x)=x4+ax3+2x2+b.其中a.b∈R.的单调递增区间,仅在x=0处有极值.求a的取值范围,(3)若对于任意的a∈[-2,2].不等式f(x)≤1在x∈[ -1,1]上恒成立.求b的取值范围. 抚州市2009届高三统一考试数学试题(文) 查看更多

 

题目列表(包括答案和解析)

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

.(本小题满分14分)已知函数f (x)=lnxg(x)=ex

( I)若函数φ (x) = f (x)-,求函数φ (x)的单调区间;

(Ⅱ)设直线l为函数的图象上一点A(x0f (x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.

 

 

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=2sin2(+x)-cos2x.

(1)求f(x)的值域;

(2)求f(x)的周期及单调递减区间.

 

 

查看答案和解析>>

 (本小题满分14分)

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.

(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;

(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.

①求证:x1>1>x2

②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

 

查看答案和解析>>

(本小题满分14分)

已知函数f(x)=log2.

(1)判断并证明f(x)的奇偶性;

(2)若关于x的方程f(x)=log2(x-k)有实根,求实数k的取值范围;

(3)问:方程f(x)=x+1是否有实根?如果有,设为x0,请求出一个长度

的区间(a,b),使x0∈(a,b);如果没有,请说明理由.

(注:区间(a,b)的长度为b-a)

 

查看答案和解析>>

1.A 2.B 3.A 4.C 5.C 6.B 7.D 8.B 9.B 10.D 11.B 12.D

13.-3 14.7 15.②④ 16.3

17.解:(1)f(x)=Acos2(ωx+φ)+1=cos(2ωx+2φ)++1.

又A>0,ω>0,0<φ<,∴f(x)的最大值为A+1,最小值为1.

由f(x)的最大值与最小值的差为2,∴A=2.

由f(x)过点(0,2),f(0)=cos 2φ+2=2,∴φ=,

则T=4π=,∴ω=,f(x)=cos(x+)+2=2-sinx.6分

(2)∵B=,∴b=f(B)=2-sin(?)=.

设A,C所对的边分别为a,c,由余弦定理得=a2+c2-2accos,+ac=a2+c2≥2ac,ac≤,

当且仅当a=c=时等号成立,△ABC的面积S=acsin≤.12分

18.解:(1)某应聘者能被聘用的概率为p0=1-(1-)(1-)(1-p)=+p.4分

(2)在4位应聘者中恰好有2人被聘用的概率为CP?(1-P0)2

恰有3位被聘用的概率为Cp?(1-p0)1,依题意Cp?(1-p0)2≥Cp?(1-p0)1,解得p0≤,

即+p≤⇒0≤p≤.12分

19.解:(1)连AQ,∠PQA是PQ与平面ABCD所成角,AQ=2,BQ=2,即Q是BC的中点,过Q作QH⊥AD于H,则QH⊥平面PAD,过Q作QM⊥PD,连MH,则∠QMH为所求二面角的平面角.

在Rt△PAD中,=⇒MH===,

所以tan∠QMH===,

从而所求二面角的大小为arctan .6分

(2)由于Q是BC的中点,可得DQ⊥PQ,

⇒面PAQ⊥面PDQ,

过A作AG⊥PQ于G,则AG为点A到平面PQD的距离.

AG===.12分

另解:分别以AD,AB,AP为x,y,z轴建立空间直角坐标系,

由条件知Q是BC的中点,面PAD的一个法向量是=(0,2,0).

又D(4,0,0),Q(2,2,0),P(0,0,4),

故=(0,2,0),=(-4,0,4),

 

设面PDQ的法向量为n=(x,y,z),

则⇒由此可取n=(1,1,1),

从而(1)cos〈,n〉===.

(2)面PDQ的一个法向量为n=(1,1,1),=(2,2,0),

故点A到平面PDQ的距离d===.

20.解:(1)an1=an1+(-1)n1+n,于是a3=a1+2-1=2,a2n1=a2n3-1+2n-2(n≥2),

∴a2n1=a2n3+2n-3(n≥2).

…………

a3=a1+1

a2n1=a1+=n2-2n+2.2分

而a2=b1+1=2

a4=b3+3=a2+4

…………

a2n=a2n2+2n

∴a2n=a2n2+2n

∴a2n=a2+=n2+n.8分

(2)Sn=++…+

=++…+=1-

∴S2009=1-=.12分

21.解:(1)设P(x,y),则=(-2-x,-y),=(2-x,-y),依题意有(-2-x)(2-x)+y2=?,化简得x2-y2=2.4分

(2)假设存在定点F(m,0),使?为常数.

当直线l与x轴不垂直时,设l:y=k(x-2),

⇒(1-k2)x2+4k2x-4k2-2=0,

依题意k2≠1,设M(x1,y1),N(x2,y2),则

于是?=(x1-m,y1)(x2-m,y2)=(k2+1)x1x2-(2k2+m)(x1+x2)+4k2+m2

=+m2-4m+2.8分

要使?是与k无关的常数,当且仅当m=1,此时?=-1.

当直线l⊥x轴时,可得M(2,),N(2,-),若m=1,则?=(1,)(1,-)=-1.

所以在x轴上存在定点F(1,0),使?为常数.12分

22.解:f′(x)=4x3+3ax2+4x=x(4x2+3ax+4).

(1)当a=-时,f′(x)=4x3+3ax2+4x=2x(2x-1)(x-2),令f′(x)≥0,得0≤x≤或x≥2,所以f(x)的增区间为[0,]与[2,+∞).4分

(2)f′(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根,为使f(x)仅在x=0处有极值,4x2+3ax+4≥0必须恒成立,即有Δ=9a3-64≤0,解得a∈[-,].8分

(3)由条件a∈[-2,2]知Δ=9a2-64<0,从而4x2+3ax+4>0恒成立.

当x<0时f′(x)<0;当x>0时,f′(x)>0.

因此f(x)在区间[-1,1]上的最大值为max{f(-1),f(1)}.

为使对任意a∈[-2,2],f(x)≤1在x∈[-1,1]上恒成立,当且仅当⇒在a∈[-2,2]上恒成立,解得b≤-4,故b的取值范围是(-∞,-4].

 

 


同步练习册答案