因为, 且, 所以有两种存在情况: 查看更多

 

题目列表(包括答案和解析)

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;

(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.

【解析】第一问中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

 (Ⅰ) 证明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,

因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,

又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已证平面PBC,所以,即,

,

于是

所以直线AE与底面ABC 所成角的正弦值为

 

查看答案和解析>>

某科研机构为了研究中年人高血压与心脏病是否有关,随机调查了一些中年人的情况,具体数据如下表:
根据表中数据可以求得Χ2=
345×(184×9-61×91)2
275×70×245×100
≈11.098
,因为P(Χ2≥10.828)≈0.001,所以有
99.9%
99.9%
的把握认为:中年人高血压与心脏病有关.
 心脏病 无心脏病
患高血压 184 61
不患高血压 91 9

查看答案和解析>>

某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表。为了检验主修统计专业是否与性别有关系,根据表中的数据,得到

因为,所以断定主修统计专业与性别有关系,这种判断出错的可能性为   

 

       专业

性别

非统计专业

统计专业

13

10

7

20

 

 

 

 

 

 

查看答案和解析>>

某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表

专业

  性别

非统计专业

统计专业

13

10

7

20

为了判断主修统计专业是否与性别有关系,根据表中的数据,得到

,因为,所以判定主修统计专业与性别有关系,这种判断出错的可能性为_________

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>


同步练习册答案