题目列表(包括答案和解析)
下列命题中,正确命题的个数为( )
①平面的基本性质1可用集合符号叙述为:若A∈l,B∈l,且A∈α,B∈α,则必有l∈α;
②四边形的两条对角线必相交于一点;
③用平行四边形表示的平面,以平行四边形的四条边作为平面的边界线;
④平行四边形是平面图形.
A.1个 B.2个 C.3个 D.4个
[番茄花园1] 本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数
、
、
满足
,则称
比
远离
.
(1)若
比1远离0,求
的取值范围;
(2)对任意两个不相等的正数
、
,证明:
比
远离
;
(3)已知函数
的定义域
.任取
,
等于
和
中远离0的那个值.写出函数
的解析式,并指出它的基本性质(结论不要求证明).
23本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
[番茄花园1]22.
..(本小题满分14分)坐标法是解析几何中最基本的研究方法,坐标法是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.请利用坐标法解决以下问题:
(Ⅰ)在直角坐标平面内,已知
,对任意
,试判断
的形状;
(Ⅱ)在平面内,已知
中,
,
为
的中点,
交
于
,求证:
.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com