题目列表(包括答案和解析)
(本小题满分14分)已知圆
:
,点
,
,点
在圆
上运动,
的垂直平分线交
于点
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设
分别是曲线
上的两个不同点,且点
在第一象限,点
在第三象限,若
,
为坐标原点,求直线
的斜率
;
(Ⅲ)过点
,
且斜率为
的动直线
交曲线
于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
(本小题满分14分)已知点F椭圆E:
的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且
是边长为2的正三角形;又椭圆E上的P、Q两点关于直线
对称.
(1)求椭圆E的方程;(2)当直线
过点(
)时,求直线PQ的方程;
(3)若点C是直线
上一点,且
=
,求
面积的最大值.
![]()
(本小题满分16分)
已知
、
、
,
是以AC为直径的圆,再以M为圆心、BM为半径作圆交
轴交于D、E两点.
(Ⅰ)若
的面积为14,求此时
的方程;
(Ⅱ)试问:是否存在一条平行于
轴的定直线与
相切?若存在,求出此直线的方程;若不存在,请说明理由;
(Ⅲ)求
的最大值,并求此时
的大小.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com