A.40 B.50 查看更多

 

题目列表(包括答案和解析)

4cos 50°tan 40°等于(  )

A. B.

C. D21

 

查看答案和解析>>

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]
元件A 8 12 40 32 8
元件B 7 18 40 29 6
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

查看答案和解析>>

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]
元件A 8 12 40 32 8
元件B 7 18 40 29 6
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一种元件B,若是正品可盈利50元,若是次品则亏损10元,记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

某市A,B,C,D四所中学报名参加某高校今年自主招生的学生人数如下表所示:
中学  A  B  C  D
人数  30  40  20  10
为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.
(1)问A,B,C,D四所中学各抽取多少名学生?
(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(3)在参加问卷调查的50名学生中,从来自A,C两所中学的学生当中随机抽取两名学生,用ξ表示抽得A中学的学生人数,求ξ的分布列.

查看答案和解析>>

实数a=ln0.5,b=0.40.5,c=log0.50.4,则a,b,c从小到大的顺序为
a<b<c
a<b<c

查看答案和解析>>

一、选择题:本大题共有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项正确的

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

D

C

D

D

A

B

B

C

B

A

C

 

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

13.(1,0)     14.       15.1      16.②③

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

 

   解:(Ⅰ)由

  

       

        ……………………………………4分

     又因为

     解得…………………………………………5分

     ………………………………………6分

(Ⅱ)在

 

        。……………………………………………9分

,

又由(Ⅰ)知

取得最大值时,为等边三角形. …………………………12分

 

 

18.(本小题满分12分)

解:(Ⅰ)设抽取的样本为名学生的成绩,

则由第一行中可知

②处的数值为;

③处的数值为…………4分

   (Ⅱ)成绩在[70,80分的学生频率为0.2,成绩在[80.90分的学生频率为0.32,

所以成绩在[70.90分的学生频率为0.52,……………………………………6分

由于有900名学生参加了这次竞赛,

所以成绩在[70.90分的学生约为(人)………………8分

   (Ⅲ)利用组中值估计平均为

…………12分

 

19.(本小题满分12分)

解:(I)由几何体的三视图可知,低面ABCD是边长为4的正方形,

,…………………………………3分

,

………………6分

   (Ⅱ)连

°

°

………………10分

 

……………………………………………………………………12分

 

20.(本小题满分12分)

解:(I)10年后新建住房总面积为

    。………………………3分

    设每年拆除的旧住房为………………5分

    解得,即每年拆除的旧住房面积是…………………………………6分

(Ⅱ)设第年新建住房面积为,则=

所以当;…………………………………………9分

   

……………………………………12分

 

21.(本小题满分12分)

解:(Ⅰ)由题意可知,可行域是以为顶点的三角形,因为

    故

    为直径的圆,

    故其方程为………………………………………………3分

    设椭圆的方程为

   

    又.

    故椭圆………………………………………5分

   (Ⅱ)直线始终与圆相切。

    设

    当

    若

               

    若

                

    即当……………………………7分

    当时,

   

    因此,点Q的坐标为

    ……………10分

   

    当

   

    综上,当,…………12分

 

22.(本小题满分14分)

解:(I)(1)

    。…………………………………………1分

    处取得极值,

    …………………………………………………2分

    即

    ………………………………………4分

   (ii)在

    由

          

          

   

    当;

    ;

    .……………………………………6分

    面

   

    且

    又

   

   

    ……………9分

   (Ⅱ)当

    ①

    ②当时,

   

   

    ③

    从面得;

    综上得,.………………………14分

 

 


同步练习册答案