题目列表(包括答案和解析)
已知椭圆
的离心率为
,且过点
.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为
的直线
与椭圆相交于不同的两点
,试问在
轴上是否存在点
,使
是与
无关的常数?若存在,求出点
的坐标;若不存在,请说明理由.
已知椭圆
的离心率为
,且过点
.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为
的直线
与椭圆相交于不同的两点
,试问在
轴上是否存在点
,使
是与
无关的常数?若存在,求出点
的坐标;若不存在,请说明理由.
| an | 2n |
(本题满分13分)设函数
,已知
,且
,曲线
在x=1处取极值.
|
(Ⅱ)如果当
是与
无关的常数
时,恒有
,求实数
的最小值
设集合W是满足下列两个条件的无穷数列{an}的集合:①
, ②
.其中
,
是与
无关的常数.
(Ⅰ)若{
}是等差数列,
是其前
项的和,
,
,证明:
;
(Ⅱ)设数列{
}的通项为
,且
,求
的取值范围;
(Ⅲ)设数列{
}的各项均为正整数,且
.证明
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com