即①当等比数列的公比时.数列是等差数列.其通项公式是, 查看更多

 

题目列表(包括答案和解析)

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
(Ⅰ)求数列{an}的首项a1和公比q;
(Ⅱ)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列。求数列T(2)的前10项之和;
(Ⅲ)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn,求Sn,并求正整数m(m>1),使得存在且不等于零。
(注:无穷等比数列各项的和即当n→∞时该无穷数列前n项和的极限)

查看答案和解析>>

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{a2n}各项的和为.

(1)求数列{an}的首项a1和公比q;

(2)对给定的k(k=1,2,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求数列T(2)的前10项之和;

(3)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn,求Sn,并求正整数m(m>1),使得存在且不等于零.

(注:无穷等比数列各项的和即当n→∞时该无穷等比数列前n项和的极限)

查看答案和解析>>

已知是等差数列,其前n项和为Sn是等比数列,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,证明).

【解析】(1)设等差数列的公差为d,等比数列的公比为q.

,得.

由条件,得方程组,解得

所以.

(2)证明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:数学归纳法)

①  当n=1时,,故等式成立.

②  假设当n=k时等式成立,即,则当n=k+1时,有:

   

   

,因此n=k+1时等式也成立

由①和②,可知对任意成立.

 

查看答案和解析>>

已知{an}是各项均为正数的等差数列,lga1、lga2、lga4成等差数列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果无穷等比数列{bn}各项的和S=
1
3
,求数列{an}的首项a1和公差d.
(注:无穷数列各项的和即当n→∞时数列前项和的极限)

查看答案和解析>>

已知{an}是各项均为正数的等差数列,lga1、lga2、lga4成等差数列.又bn=
1
a2n
,n=1,2,3,….
(Ⅰ)证明{bn}为等比数列;
(Ⅱ)如果无穷等比数列{bn}各项的和S=
1
3
,求数列{an}的首项a1和公差d.
(注:无穷数列各项的和即当n→∞时数列前项和的极限)

查看答案和解析>>


同步练习册答案