综上所述.当为奇数时.函数的最大值为.最小值为. 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>

>0时,函数的最小值为(   )

A.2                B.4                C.6            D.8

 

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>


四 附加题:(本小题满分15分)
已知函数为自然对数的底数).aR
1)当a=1时,求函数的最小值;
(2)若函数f(x)在上存在极小值,求a的取值范围;
(3)若,证明:

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,函数的最小值为0,且f(-1+x)=f(-1-x)成立;
②当x∈(0,5)时,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函数f(x)的解析式;
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈[1,m]时,就有f(x+t)≤x成立.

查看答案和解析>>


同步练习册答案