题目列表(包括答案和解析)
已知函数![]()
(1) 若函数
在
上单调,求
的值;
(2)若函数
在区间
上的最大值是
,求
的取值范围.
【解析】第一问,![]()
![]()
,
、
第二问中,![]()
由(1)知: 当
时,
上单调递增
满足条件当
时, ![]()
![]()
![]()
![]()
解: (1) ![]()
……3分
,
…………….7分
(2) ![]()
由(1)知: 当
时,
上单调递增
满足条件…………..10分
当
时,
且
![]()
…………13分
综上所述: ![]()
已知函数
在
处取得极值2.
⑴ 求函数
的解析式;
⑵ 若函数
在区间
上是单调函数,求实数m的取值范围;
【解析】第一问中利用导数![]()
又f(x)在x=1处取得极值2,所以
,
所以![]()
第二问中,
因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得![]()
解:⑴ 求导
,又f(x)在x=1处取得极值2,所以
,即
,所以
…………6分
⑵ 因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得
, …………9分
当f(x)在区间(m,2m+1)上单调递减,则有
得
…………12分
.综上所述,当
时,f(x)在(m,2m+1)上单调递增,当
时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是
或![]()
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,…
均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.
![]()
【解析】第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![]()
第三问
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![]()
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立;
……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![]()
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![]()
.
所以,![]()
设函数![]()
(1)当
时,求曲线
处的切线方程;
(2)当
时,求
的极大值和极小值;
(3)若函数
在区间
上是增函数,求实数
的取值范围.
【解析】(1)中,先利用
,表示出点
的斜率值
这样可以得到切线方程。(2)中,当
,再令
,利用导数的正负确定单调性,进而得到极值。(3)中,利用函数在给定区间递增,说明了
在区间
导数恒大于等于零,分离参数求解范围的思想。
解:(1)当
……2分
∴![]()
即
为所求切线方程。………………4分
(2)当![]()
令
………………6分
∴
递减,在(3,+
)递增
∴
的极大值为
…………8分
(3)![]()
①若
上单调递增。∴满足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
时,不合题意。综上所述,实数
的取值范围是![]()
已知
,函数![]()
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![]()
![]()
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![]()
![]()
①
当
即
时
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
故
的极大值是
,极小值是![]()
②
当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![]()
对
求导,得![]()
∵
,
![]()
∴
在区间
上为增函数,则![]()
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![]()
,
)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com