题目列表(包括答案和解析)
本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
已知以原点
为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若
的坐标分别是
,求
的最大值;
(Ⅱ)如题(20)图,点
的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,
.求线段
的中点
的轨迹方程;
![]()
(本小题满分12分)
有一幅椭圆型彗星轨道图,长4cm,高
,如下图,
已知O为椭圆中心,A1,A2是长轴两端点,
|
(Ⅰ)建立适当的坐标系,写出椭圆方程,
并求出当彗星运行到太阳正上方时二者在图上的距离;
(Ⅱ)直线l垂直于A1A2的延长线于D点,|OD|=4,
设P是l上异于D点的任意一点,直线A1P,A2P分别
交椭圆于M、N(不同于A1,A2)两点,问点A2能否
在以MN为直径的圆上?试说明理由.
(本小题满分12分)已知中心在原点的椭圆
的离心率
,一条准线方程为![]()
(1)求椭圆
的标准方程;
(2)若以
>0)为斜率的直线
与椭圆
相交于两个不同的点
,且线段
的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围。
(本小题满分12分)己知
、
、
是椭圆
:
(
)上的三点,其中点
的坐标为
,
过椭圆的中心,且
,
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
(斜率存在时)与椭圆
交于两点
,
,设
为椭圆
与
轴负半轴的交点,且
,求实数
的取值范围.
(本小题满分12分) 已知椭圆
的离心率
,A,B
分别为椭圆的长轴和短轴的端点,
为AB的中点,O为坐标原点,且
.
(1)求椭圆的方程;
(2)过(-1,0)的直线
交椭圆于P,Q两点,求△POQ面积最大时直线
的方程.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com