.两点.又.求曲线的方程. 查看更多

 

题目列表(包括答案和解析)

设双曲线的顶点是椭圆
x2
3
+
y2
4
=1
的焦点,该双曲线又与直线
15
x-3y+6=0
交于两点A、B且OA⊥OB(O为原点).
(1)求此双曲线的标准方程; 
(2)求|AB|的长度.

查看答案和解析>>

设双曲线的顶点是椭圆
x2
3
+
y2
4
=1
的焦点,该双曲线又与直线
15
x-3y+6=0
交于两点A、B且OA⊥OB(O为原点).
(1)求此双曲线的标准方程; 
(2)求|AB|的长度.

查看答案和解析>>

设双曲线的顶点是椭圆的焦点,该双曲线又与直线交于两点A、B且OA⊥OB(O为原点).
(1)求此双曲线的标准方程; 
(2)求|AB|的长度.

查看答案和解析>>

已知曲线C

(1)由曲线C上任一点E向轴作垂线,垂足为F,动点P满足,所成的比为,求点P的轨迹. P的轨迹可能是圆吗?请说明理由;

(2)如果直线l的斜率为,且过点M(0,),直线l交曲线C于A、B两点,又,求曲线C的方程.

查看答案和解析>>

已知双曲线的中心在坐标原点O上,焦点在x轴上,且浙近线方程为y=±,过双曲线右焦点且斜率为的直线交双曲线于P、Q两点,又|PQ|=4,求此双曲线方程.

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分.

 

题号

1

2

3

4

5

6

7

8

9

10

答案

A

D

C

B

D

A

B

B

C

D

 

二、填空题:本大题7小题,每小题4分,共28分.

11、; 12、 ; 13、;  14、; 15、;  16、 ;17、

三、解答题

18、(1)略   …………………………………………………………………………(7分)

(2)  …………………………………………………………(14分)

19、(1)tanA=     …………………(7分)

(2) 原式=

=   ……………………………………………………………………(14分)

20、(1)略      ……………………………………………………………………(7分)

(2)就是二面角的平面角,即

 …………………………………………………………………(9分) 

 取中点,则平面

就是与平面所成的角。   …………………………(11分)

所以与平面所成的角的大小为。 …………………………(14分)

(用向量方法,相应给分)

21、(1)

         又在区间(-∞,0)及(4,+∞)上都是增函数,在区间(0,4)上是减函数,      又.………(6分)

   (2)

         当点是切点时,切线方程为9x+6y-16=0.………………(10分)

当点不是切点时,切点为

     所以切点为

切线方程为.……………………………………(14分)

22、解:解:(1)、设,则

 ∵点P分所成的比为   ∴    ∴  

     代入中,得 为P点的轨迹方程.

时,轨迹是圆. …………………………………………………(8分)

(2)、由题设知直线l的方程为, 设

联立方程组  ,消去得: 

∵ 方程组有两解  ∴   ∴    

   ∵

      ∴    

又 ∵    ∴    解得(舍去)或

∴ 曲线C的方程是  ……………………………………………(16分)


同步练习册答案