题目列表(包括答案和解析)
把函数
的图象按向量
平移得到函数
的图象.
(1)求函数
的解析式; (2)若
,证明:
.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
,便可以得到结论。第二问中,令
,然后求导,利用最小值大于零得到。
(1)解:设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 证明:令
,……6分
则
……8分
,∴
,∴
在
上单调递增.……10分
故
,即![]()
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
(本小题满分12分)
已知ABC的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0)
若c=5,求sin∠A的值;
若∠A为钝角,求c的取值范围;
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
函数
是定义在
上的奇函数,且
。
(1)求实数a,b,并确定函数
的解析式;
(2)判断
在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出
的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数
是定义在
上的奇函数,且
。
解得
,![]()
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为
,并由此得到当,x=-1时,
,当x=1时,![]()
解:(1)
是奇函数,
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为
…………………………………………10分
当,x=-1时,
,当x=1时,
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com